Модели молекул: Азотсодержащие соединения | marinky
Нажмите на картинку, чтобы увеличить
Аммиак
Метиламин
Диметиламин
Анилин
Триметиламин
Синильная кислота
marinkyМодели молекулграфика, неорганическая химия, органическая химияПросмотров: 5 414
marinky.com
строение, формулы, свойства и примеры
Физические свойства аммиака
Аммиак (NH3) – бесцветный газ с резким запахом (запах «нашатырного спирта»), легче воздуха, хорошо растворим в воде (один объем воды растворят до 700 объемов аммиака). Концентрированный раствор аммиака содержит 25% (массовых) аммиака и имеет плотность 0,91 г/см
Строение молекулы аммиака
Связи между атомами в молекуле аммиака – ковалентные. Общий вид молекулы AB3, следовательно, чтобы определить тип гибридизации и строение молекулы можно использовать метод валентных связей и метод Гиллеспи:
7 N 1s22s22p3
1H 1s1
В гибридизацию вступают все валентные орбитали атома азота, следовательно, тип гибридизации молекулы аммиака – sp3. Для определения структуры строения молекулы рассчитаем число неподеленных электронных пар:
НЕП = (5-3)/2 = 1
Следовательно, имеется одна неподеленная пара электронов. Аммиак имеет структуру типа AB3E – тригональной пирамиды.
Получение аммиака
Выделяют промышленные и лабораторные способы получения аммиака. В лаборатории аммиак получают действием щелочей на растворы солей аммония при нагревании:
NH4Cl + KOH = NH3↑ + KCl + H2O
NH4+ + OH— = NH3↑+ H2O
Эта реакция является качественной на ионы аммония.
Химические свойства аммиака
В химическом отношении аммиак довольно активен: он вступает в реакции взаимодействия со многими веществами. Степень окисления азота в аммиаке «-3» — минимальная, поэтому аммиак проявляет только восстановительные свойства.
При нагревании аммиака с галогенами, оксидами тяжелых металлов и кислородом образуется азот:
2NH3 + 3Br2 = N2 + 6HBr
2NH3 + 3CuO = 3Cu + N2 + 3H2O
4NH
В присутствии катализатора аммиак способен окисляться до оксида азота (II):
4NH3 + 5O2 = 4NO + 6H2O (катализатор – платина)
В отличие от водородных соединений неметаллов VI и VII групп, аммиак не проявляет кислотные свойства. Однако, атомы водорода в его молекуле все же способны замещаться на атомы металлов. При полном замещении водорода металлом происходит образование соединений, называемых нитридами, которые также можно получить и при непосредственном взаимодействии азота с металлом при высокой температуре.
Основные свойства аммиака обусловлены наличием неподеленной пары электронов у атома азота. Раствор аммиака в воде имеет щелочную среду:
NH3 + H2O ↔ NH4OH ↔ NH4+ + OH—
При взаимодействии аммиака с кислотами образуются соли аммония, которые при нагревании разлагаются:
NH3 + HCl = NH4Cl
NH4Cl = NH3 + HCl (при нагревании)
Примеры решения задач
ru.solverbook.com
Аммиак
аммиак формула, аммиак гэж юу вэАммиа́к — Nh4, нитрид водорода, при нормальных условиях — бесцветный газ с резким характерным запахом (запах нашатырного спирта).
Плотность аммиака почти вдвое меньше, чем у воздуха, ПДКр.з. 20 мг/м3 — IV класс опасности (малоопасные вещества) по ГОСТ 12.1.007. Растворимость Nh4 в воде чрезвычайно велика — около 1200 объёмов (при 0 °C) или 700 объёмов (при 20 °C) в объёме воды. В холодильной технике носит название R717, где R — Refrigerant (хладагент), 7 — тип хладагента (неорганическое соединение), 17 — молекулярная масса.
Молекула аммиака имеет форму тригональной пирамиды с атомом азота в вершине. Три неспаренных p-электрона атома азота участвуют в образовании полярных ковалентных связей с 1s-электронами трёх атомов водорода (связи N−H), четвёртая пара внешних электронов является неподелённой, она может образовать ковалентную связь по донорно-акцепторному механизму с ионом водорода, образуя ион аммония Nh5+. Благодаря тому, что не связывающее двухэлектронное облако строго ориентировано в пространстве, молекула аммиака обладает высокой полярностью, что приводит к его хорошей растворимости в воде.
В жидком аммиаке молекулы связаны между собой водородными связями. Сравнение физических свойств жидкого аммиака с водой показывает, что аммиак имеет более низкие температуры кипения (tкип −33,35 °C) и плавления (tпл −77,70 °C), а также более низкую плотность, вязкость (вязкость жидкого аммиака в 7 раз меньше вязкости воды), проводимость и диэлектрическую проницаемость. Это в некоторой степени объясняется тем, что прочность этих связей в жидком аммиаке существенно ниже, чем у воды, а также тем, что в молекуле аммиака имеется лишь одна пара неподелённых электронов, в отличие от двух пар в молекуле воды, что не дает возможность образовывать разветвлённую сеть водородных связей между несколькими молекулами. Аммиак легко переходит в бесцветную жидкость с плотностью 681,4 кг/м³, сильно преломляющую свет. Подобно воде, жидкий аммиак сильно ассоциирован, главным образом за счёт образования водородных связей. Жидкий аммиак практически не проводит электрический ток. Жидкий аммиак — хороший растворитель для очень большого числа органических, а также для многих неорганических соединений. Твёрдый аммиак — бесцветные кубические кристаллы.
Содержание
- 1 Химические свойства
- 2 История
- 3 Происхождение названия
- 4 Жидкий аммиак
- 5 Комплексообразование
- 6 Биологическая роль
- 7 Физиологическое действие
- 8 Применение
- 9 Получение
- 9.1 Расходные нормы на тонну аммиака
- 10 Аммиак в медицине
- 11 Производители аммиака
- 12 Интересные факты
- 13 См. также
- 14 Примечания
- 15 Литература
- 16 Ссылки
Химические свойства
- Благодаря наличию неподеленной электронной пары во многих реакциях аммиак выступает как основание Бренстеда или комплексообразователь (не следует путать понятия «нуклеофил» и «основание Бренстеда». Нуклеофильность определяется сродством к положительно заряженной частице. Основание имеет сродство к протону. Понятие «основание» является частным случаем понятия «нуклеофил»). Так, он присоединяет протон, образуя ион аммония:
- Водный раствор аммиака («нашатырный спирт») имеет слабощелочную реакцию из-за протекания процесса:
- Взаимодействуя с кислотами, даёт соответствующие соли аммония:
- Аммиак также является очень слабой кислотой (в 10 000 000 000 раз более слабой, чем вода), способен образовывать с металлами соли — амиды. Соединения, содержащие ионы Nh3−, называются амидами, а N3− — нитридами. Амиды щелочных металлов получают, действуя на них аммиаком:
Амиды, имиды и нитриды ряда металлов образуются в результате некоторых реакций в среде жидкого аммиака. Нитриды можно получить нагреванием металлов в атмосфере азота.
Амиды металлов являются аналогами гидроксидов. Эта аналогия усиливается тем, что ионы ОН− и Nh3−, а также молекулы Н2O и Nh4 изоэлектронны. Амиды являются более сильными основаниями, чем гидроксиды, а следовательно, подвергаются в водных растворах необратимому гидролизу:
и в спиртах:
Подобно водным растворам щелочей, аммиачные растворы амидов хорошо проводят электрический ток, что обусловлено диссоциацией:
Фенолфталеин в этих растворах окрашивается в малиновый цвет, при добавлении кислот происходит их нейтрализация. Растворимость амидов изменяется в такой же последовательности, что и растворимость гидроксидов: LiNh3 — нерастворим, NaNh3 — малорастворим, KNh3, RbNh3 и CsNh3 — хорошо растворимы.
- При нагревании аммиак разлагается, проявляет восстановительные свойства. Так, он горит в атмосфере кислорода, образуя воду и азот. Окисление аммиака воздухом на платиновом катализаторе даёт оксиды азота, что используется в промышленности для получения азотной кислоты:
На восстановительной способности Nh4 основано применение нашатыря Nh5Cl для очистки поверхности металла от оксидов при их пайке:
Окисляя аммиак гипохлоритом натрия в присутствии желатина, получают гидразин:
- Галогены (хлор, йод) образуют с аммиаком опасные взрывчатые вещества — галогениды азота (хлористый азот, иодистый азот).
- С галогеноалканами аммиак вступает в реакцию нуклеофильного присоединения, образуя замещённый ион аммония (способ получения аминов):
- С карбоновыми кислотами, их ангидридами, галогенангидридами, эфирами и другими производными даёт амиды. С альдегидами и кетонами — основания Шиффа, которые возможно восстановить до соответствующих аминов (восстановительное аминирование).
- При 1000 °C аммиак реагирует с углём, образуя синильную кислоту HCN и частично разлагаясь на азот и водород. Также он может реагировать с метаном, образуя ту же самую синильную кислоту:
История
Аммиак был впервые выделен в чистом виде Дж. Пристли в 1774 году, который назвал его «щелочной воздух» (англ. alkaline air). Через одиннадцать лет, в 1785 году К. Бертолле установил точный химический состав аммиака. С того времени в мире начались исследования по получению аммиака из азота и водорода. Аммиак был очень нужен для синтеза соединений азота, поскольку получение их из чилийской селитры ограничивалось постепенным истощением запасов последней. Проблема уменьшения запасов селитры обострилась к концу XIX века. Только в начале XX века удалось изобрести процесс синтеза аммиака, пригодный для промышленности. Это осуществил Ф. Габер, начавший трудиться над этой задачей в 1904 году и к 1909 году создавший небольшой контактный аппарат, в котором использовал повышенное давление (в соответствии с принципом Ле-Шателье) и катализатор из осмия. 2 июля 1909 года Габер устроил испытания аппарата в присутствии К. Боша и А. Митташа (нем. Alwin Mittasch), оба — от Баденского анилинового и содового завода (BASF), и получил аммиак. К. Бош к 1911 году создал крупномасштабную версию аппарата для BASF, а затем был построен и 9 сентября 1913 года вступил в строй первый в мире завод по синтезу аммиака, который был расположен в Оппау (ныне район в черте города Людвигсхафен-на-Рейне) и принадлежал BASF. В 1918 году Ф. Габер стал лауреатом Нобелевской премии по химии «за синтез аммиака из составляющих его элементов». В России и СССР первая партия синтетического аммиака была получена в 1928 году на Чернореченском химическом комбинате.
Происхождение названия
Аммиак (в европейских языках его название звучит как «аммониак») своим названием обязан оазису Аммона в Северной Африке, расположенному на перекрестке караванных путей. В жарком климате мочевина (Nh3)2CO, содержащаяся в продуктах жизнедеятельности животных, разлагается особенно быстро. Одним из продуктов разложения и является аммиак. По другим сведениям, аммиак получил своё название от древнеегипетского слова амониан. Так называли людей, поклоняющихся богу Амону. Они во время своих ритуальных обрядов нюхали нашатырь Nh5Cl, который при нагревании испаряет аммиак.
Жидкий аммиак
Жидкий аммиак, хотя и в незначительной степени, диссоциирует на ионы (автопротолиз), в чём проявляется его сходство с водой:
Константа самоионизации жидкого аммиака при −50 °C составляет примерно 10−33 (моль/л)².
Жидкий аммиак, как и вода, является сильным ионизирующим растворителем, в котором растворяется ряд активных металлов: щелочные, щёлочноземельные, Mg, Al, а также Eu и Yb. Растворимость щелочных металлов в жидком Nh4 составляет несколько десятков процентов. В жидком аммиаке Nh4 также растворяются некоторые интерметаллиды, содержащие щелочные металлы, например, Na4Pb9.
Разбавленные растворы металлов в жидком аммиаке окрашены в синий цвет, концентрированные растворы имеют металлический блеск и похожи на бронзу. При испарении аммиака щелочные металлы выделяются в чистом виде, а щелочноземельные — в виде комплексов с аммиаком обладающих металлической проводимостью. При слабом нагревании эти комплексы разлагаются на металл и Nh4.
Растворенный в Nh4 металл постепенно реагирует с образованием амида:
Получающиеся в результате реакции с аммиаком амиды металлов содержат отрицательный ион Nh3−, который также образуется при самоионизации аммиака. Таким образом, амиды металлов являются аналогами гидроксидов. Скорость реакции возрастает при переходе от Li к Cs. Реакция значительно ускоряется в присутствии даже небольших примесей h3O.
Металлоаммиачные растворы обладают металлической электропроводностью, в них происходит распад атомов металла на положительные ионы и сольватированные электроны, окруженные молекулами Nh4. Металлоаммиачные растворы, в которых содержатся свободные электроны, являются сильнейшими восстановителями.
Комплексообразование
Благодаря своим электронодонорным свойствам молекулы Nh4 могут входить в качестве лиганда в комплексные соединения. Так, введение избытка аммиака в растворы солей d-металлов приводит к образованию их аминокомплексов:
Комплексообразование обычно сопровождается изменением окраски раствора. Так, в первой реакции голубой цвет (CuSO4) переходит в темно-синий (окраска комплекса), а во второй реакции окраска изменяется из зелёной (Ni(NO3)2) в сине-фиолетовую. Наиболее прочные комплексы с Nh4 образуют хром и кобальт в степени окисления +3.
Биологическая роль
Основные симптомы гипераммониемии (повышения уровня эндогенного аммиака до токсических концентраций).Аммиак является важным источником азота для живых организмов. Несмотря на высокое содержание свободного азота в атмосфере (более 75 %), очень мало живых существ способны использовать свободный, нейтральный двухатомный азот атмосферы, газ N2. Поэтому для включения азота атмосферы в биологический оборот, в частности в синтез аминокислот и нуклеотидов, необходим процесс, который называется «фиксацией азота». Некоторые растения зависят от доступности аммиака и других нитрогенных остатков, выделяющихся в почву разлагающимися органическими остатками других растений и животных. Некоторые другие, такие, как азотфиксирующие бобовые, используют преимущества симбиоза с азотфиксирующими бактериями (ризобиями), которые способны образовывать аммиак из атмосферного азота.
У некоторых организмов аммиак образуется из атмосферного азота с помощью ферментов, называемых нитрогеназами. Этот процесс называется фиксацией азота. И хотя маловероятно, что когда-либо будут изобретены биомиметические методы, способные конкурировать по производительности с химическими методами производства аммиака из азота, тем не менее, учёные прилагают большие усилия к тому, чтобы как можно лучше понять механизмы биологической фиксации азота. Научный интерес к этой проблеме отчасти мотивируется необычной структурой активного каталитического центра азотфиксирующего фермента (нитрогеназы), которая содержит необычный биметаллический молекулярный ансамбль Fe7MoS9.
Аммиак является также конечным побочным продуктом метаболизма аминокислот, а именно продуктом их дезаминирования, катализируемого такими ферментами, как глутамат-дегидрогеназа. Экскреция аммиака в неизменённом виде является обычным путём детоксикации аммиака у водных существ (рыбы, водные беспозвоночные, отчасти амфибии). У млекопитающих, включая человека, аммиак обычно быстро превращается в мочевину, которая гораздо менее токсична и, в частности, имеет менее щелочную реакцию и меньшую реакционную способность в качестве восстановителя. Мочевина является основным компонентом сухого остатка мочи. Большинство птиц, пресмыкающихся, насекомых, паукообразных, однако, выделяют в качестве основного нитрогенного остатка не мочевину, а мочевую кислоту.
Аммиак также играет важную роль как в нормальной, так и в патологической физиологии животных. Аммиак производится в процессе нормального метаболизма аминокислот, однако весьма токсичен в высоких концентрациях. Печень животных преобразует аммиак в мочевину с помощью серии последовательных реакций, известных как цикл мочевины. Нарушение функции печени, такое, например, какое наблюдается при циррозе печени, может приводить к нарушению способности печени обезвреживать аммиак и образовывать из него мочевину, и, как следствие, к повышению уровня аммиака в крови, состоянию, называемому гипераммониемия. К аналогичному результату — повышению уровня свободного аммиака в крови и развитию гипераммониемии — приводит наличие врождённых генетических дефектов в ферментах цикла мочевины, таких, например, как орнитин-карбамилтрансфераза. К тому же результату может приводить нарушение выделительной функции почек при тяжёлой почечной недостаточности и уремии: вследствие задержки выделения мочевины её уровень в крови возрастает настолько, что «цикл мочевины» начинает работать «в обратную сторону» — избыток мочевины гидролизуется обратно почками в аммиак и углекислый газ, и, как следствие, уровень аммиака в крови возрастает. Гипераммониемия привносит свой вклад в нарушения сознания и развитие сопорозных и коматозных состояний при печёночной энцефалопатии и уремии, а также в развитие неврологических нарушений, часто наблюдаемых у больных с врождёнными дефектами ферментов цикла мочевины или с органическими ацидуриями.
Менее выраженная, однако клинически существенная, гипераммониемия может наблюдаться при любых процессах, при которых наблюдается повышенный катаболизм белков, например, при обширных ожогах, синдроме сдавления или размозжения тканей, обширных гнойно-некротических процессах, гангрене конечностей, сепсисе и т. д., а также при некоторых эндокринных нарушениях, таких, как сахарный диабет, тяжёлый тиреотоксикоз. Особенно высока вероятность возникновения гипераммониемии при этих патологических состояниях в тех случаях, когда патологическое состояние, помимо повышенного катаболизма белков, вызывает также выраженное нарушение детоксицирующей функции печени или выделительной функции почек.
Аммиак важен для поддержания нормального кислотно-щелочного баланса крови. После образования аммиака из глютамина, альфа-кетоглутарат может быть далее расщеплен с образованием двух молекул гидрокарбоната, которые затем могут использоваться как буфер для нейтрализации кислот, поступающих с пищей. Полученный из глютамина аммиак затем выделяется с мочой (как непосредственно, так и в виде мочевины), что, с учётом образования двух молекул бикарбоната из кетоглутарата, приводит в сумме к потере кислот и сдвигу pH крови в щелочную сторону. Кроме того, аммиак может диффундировать через почечные канальцы, соединяться с ионом водорода и экскретироваться совместно с ним (Nh4 + H+ => Nh5+), и тем самым ещё больше способствовать выведению кислот из организма.
Аммиак и ионы аммония являются токсическим побочным продуктом метаболизма у животных. У рыб и водных беспозвоночных аммиак выделяется непосредственно в воду. У млекопитающих (включая водных млекопитающих), земноводных и у акул аммиак в цикле мочевины преобразуется в мочевину, поскольку мочевина гораздо менее токсична, менее химически реакционноспособна и может более эффективно «храниться» в организме до момента возможности её выделения. У птиц и пресмыкающихся (рептилий) аммиак, образовавшийся в процессе метаболизма, преобразуется в мочевую кислоту, которая является твёрдым остатком и может быть выделена с минимальными потерями воды.
Физиологическое действие
По физиологическому действию на организм относится к группе веществ удушающего и нейротропного действия, способных при ингаляционном поражении вызвать токсический отёк лёгких и тяжёлое поражение нервной системы. Аммиак обладает как местным, так и резорбтивным действием.
Пары аммиака сильно раздражают слизистые оболочки глаз и органов дыхания, а также кожные покровы. Это человек и воспринимает как резкий запах. Пары аммиака вызывают обильное слезотечение, боль в глазах, химический ожог конъюнктивы и роговицы, потерю зрения, приступы кашля, покраснение и зуд кожи. При соприкосновении сжиженного аммиака и его растворов с кожей возникает жжение, возможен химический ожог с пузырями, изъязвлениями. Кроме того, сжиженный аммиак при испарении поглощает тепло, и при соприкосновении с кожей возникает обморожение различной степени. Запах аммиака ощущается при концентрации 37 мг/м³.
Предельно допустимая концентрация в воздухе рабочей зоны производственного помещения (ПДКр.з.) составляет 20 мг/м³. В атмосферном воздухе населённых пунктов и в жилых помещениях среднесуточная концентрация аммиака (ПДКс.с.) не должна превышать 0,04 мг/м³. Максимальная разовая концентрация в атмосфере — 0,2 мг/м³. Таким образом, ощущение запаха аммиака свидетельствует о превышении допустимых норм.
Раздражение зева проявляется при содержании аммиака в воздухе 280 мг/м³, глаз — 490 мг/м³. При действии в очень высоких концентрациях аммиак вызывает поражение кожи: 7—14 г/м³ — эритематозный, 21 г/м³ и более — буллёзный дерматит. Токсический отёк лёгких развивается при воздействии аммиака в течение часа с концентрацией 1,5 г/м³. Кратковременное воздействие аммиака в концентрации 3,5 г/м³ и более быстро приводит к развитию общетоксических эффектов.
В мире максимальная концентрация аммиака в атмосфере (больше 1 мг/м³) наблюдается на Индо-Гангской равнине, в Центральной долине США и в Южно-Казахстанской области.
Применение
Аммиак относится к числу важнейших продуктов химической промышленности, ежегодное его мировое производство достигает 150 млн тонн. В основном используется для производства азотных удобрений (нитрат и сульфат аммония, мочевина), взрывчатых веществ и полимеров, азотной кислоты, соды (по аммиачному методу) и других продуктов химической промышленности. Жидкий аммиак используют в качестве растворителя.
В холодильной технике используется в качестве холодильного агента (R717).
В медицине 10 % раствор аммиака, чаще называемый нашатырным спиртом, применяется при обморочных состояниях (для возбуждения дыхания), для стимуляции рвоты, а также наружно — невралгии, миозиты, укусах насекомых, для обработки рук хирурга. При неправильном применении может вызвать ожоги пищевода и желудка (в случае приёма неразведённого раствора), рефлекторную остановку дыхания (при вдыхании в высокой концентрации).
Применяют местно, ингаляционно и внутрь. Для возбуждения дыхания и выведения больного из обморочного состояния осторожно подносят небольшой кусок марли или ваты, смоченный нашатырным спиртом, к носу больного (на 0,5—1 с). Внутрь (только в разведении) для индукции рвоты. При укусах насекомых — в виде примочек; при невралгиях и миозитах — растирания аммиачным линиментом. В хирургической практике разводят в тёплой кипяченой воде и моют руки.
Поскольку аммиак является слабым основанием, при взаимодействии с кислотами он их нейтрализует.
Физиологическое действие нашатырного спирта обусловлено резким запахом аммиака, который раздражает специфические рецепторы слизистой оболочки носа и способствует возбуждению дыхательного и сосудодвигательного центров мозга, вызывая учащение дыхания и повышение артериального давления.
Противоморозная добавка для сухих строительных растворов, относящаяся к ускорителям. Рекомендуемая дозировка — 2…8 % массы компонентов сухой смеси в зависимости от температуры применения. Аммиачная вода — продукт (Nh4*h3O), представляющий собой газообразный аммиак NН3, растворенный в воде.
Получение
Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:
+ 91,84 кДжЭто так называемый процесс Габера (немецкий физик, разработал физико-химические основы метода).
Реакция происходит с выделением тепла и понижением объёма. Следовательно, исходя из принципа Ле-Шателье, реакцию следует проводить при возможно низких температурах и при высоких давлениях — тогда равновесие будет смещено вправо. Однако скорость реакции при низких температурах ничтожно мала, а при высоких увеличивается скорость обратной реакции. Проведение реакции при очень высоких давлениях требует создания специального, выдерживающего высокое давление оборудования, а значит, и больших капиталовложений. Кроме того, равновесие реакции даже при 700 °C устанавливается слишком медленно для практического её использования.
Выход аммиака (в объёмных процентах) в процессе Габера при различных температурах и давлении имеет следующие значения:
100 ат | 300 ат | 1000 ат | 1500 ат | 2000 ат | 3500 ат | |
---|---|---|---|---|---|---|
400 °C | 25,12 | 47,00 | 79,82 | 88,54 | 93,07 | 97,73 |
450 °C | 16,43 | 35,82 | 69,69 | 84,07 | 89,83 | 97,18 |
500 °C | 10,61 | 26,44 | 57,47 | Нет данных | ||
550 °C | 6,82 | 19,13 | 41,16 |
Применение катализатора (пористое железо с примесями Al2O3 и K2O) позволило ускорить достижение равновесного состояния. Интересно, что при поиске катализатора на эту роль пробовали более 20 тысяч различных веществ.
Учитывая все вышеприведённые факторы, процесс получения аммиака проводят при следующих условиях: температура 500 °C, давление 350 атмосфер, катализатор. Выход аммиака при таких условиях составляет около 30 %. В промышленных условиях использован принцип циркуляции — аммиак удаляют охлаждением, а непрореагировавшие азот и водород возвращают в колонну синтеза. Это оказывается более экономичным, чем достижение более высокого выхода реакции за счёт повышения давления.
Для получения аммиака в лаборатории используют действие сильных щелочей на соли аммония:
Обычно лабораторным способом аммиак получают слабым нагреванием смеси хлорида аммония с гашеной известью.
Для осушения аммиака его пропускают через смесь извести с едким натром.
Очень сухой аммиак можно получить, растворяя в нём металлический натрий и впоследствии перегоняя. Это лучше делать в системе, изготовленной из металла под вакуумом. Система должна выдерживать высокое давление (при комнатной температуре давление насыщенных паров аммиака около 10 атмосфер). В промышленности аммиак осушают в абсорбционных колоннах.
Расходные нормы на тонну аммиака
На производство одной тонны аммиака в России расходуется в среднем 1200 нм³ природного газа, в Европе — 900 нм³ .
Белорусский «Гродно Азот» расходует 1200 нм³ природного газа на тонну аммиака, после модернизации ожидается снижение расхода до 876 нм³.
Украинские производители потребляют от 750 нм³ до 1170 нм³ природного газа на тонну аммиака.
По технологии UHDE заявляется потребление 6,7 — 7,4 Гкал энергоресурсов на тонну аммиака.
Аммиак в медицине
При укусах насекомых аммиак применяют наружно в виде примочек. 10 % водный раствор аммиака известен как нашатырный спирт.
Возможны побочные действия: при продолжительной экспозиции (ингаляционное применение) аммиак может вызвать рефлекторную остановку дыхания.
Местное применение противопоказано при дерматитах, экземах, других кожных заболеваниях, а также при открытых травматических повреждениях кожных покровов.
При случайном поражении слизистой оболочки глаза промыть водой (по 15 раз через каждые 10 мин) или 5 % раствором борной кислоты. Масла и мази не применяют. При поражении носа и глотки — 0,5 % раствор лимонной кислоты или натуральные соки. В случае приема внутрь пить воду, фруктовый сок, молоко, лучше — 0,5 % раствор лимонной кислоты или 1 % раствор уксусной кислоты до полной нейтрализации содержимого желудка.
Взаимодействие с другими лекарственными средствами неизвестно.
Производители аммиака
Производители аммиака в России
Компания | 2006, тыс. т | 2007, тыс. т |
---|---|---|
ОАО «Тольяттиазот» | 2 634 | 2 403,3 |
ОАО НАК «Азот» | 1 526 | 1 514,8 |
ОАО «Акрон» | 1 526 | 1 114,2 |
ОАО «Невинномысский азот», г. Невинномысск | 1 065 | 1 087,2 |
ОАО «Минудобрения» (г. Россошь) | 959 | 986,2 |
ОАО «АЗОТ» г. Кемерово | 854 | 957,3 |
ОАО «Азот» | 869 | 920,1 |
ОАО «ЗМУ КЧХК» | 956 | 881,1 |
ОАО Череповецкий «Азот» | 936,1 | 790,6 |
ЗАО «Куйбышевазот» | 506 | 570,4 |
ОАО «Газпром Нефтехим Салават» | 492 | 512,8 |
«Минеральные удобрения» (г. Пермь) | 437 | 474,6 |
ОАО «Дорогобуж» | 444 | 473,9 |
ОАО «Воскресенские минеральные удобрения» | 175 | 205,3 |
ОАО «Щекиноазот» | 58 | 61,1 |
ООО «МенделеевскАзот» | — | — |
Итого | 13 321,1 | 12 952,9 |
На долю России приходится около 9 % мирового выпуска аммиака. Россия — один из крупнейших мировых экспортеров аммиака. На экспорт поставляется около 25 % от общего объёма производства аммиака, что составляет около 16 % мирового экспорта.
Производители аммиака в Украине
Компания | 2008 |
---|---|
ПАО «Концерн Стирол» | 1 331 |
Одесский припортовый завод | 1 128 |
Северодонецкое объединение Азот | 1 015 |
«Азот» (Черкассы) | 778 |
«Днепроазот» | 515 |
«Ровноазот» | 382 |
Итого | 5 148 |
Интересные факты
- Пары нашатырного спирта способны изменять окраску цветов. Например, голубые и синие лепестки становятся зелеными, ярко-красные — черными.
- Облака Юпитера состоят из аммиака.
- Некоторые цветы, не имеющие запаха от природы, после обработки аммиаком начинают благоухать. Например, приятный аромат приобретают астры
- Нашатырный спирт реагирует с йодом с образованием крайне нестабильного аддукта в сухом кристаллическом состоянии, что используется как эффектный химический опыт.
См. также
- Аммиакопровод
Примечания
- ↑ ГОСТ 6221-90. Аммиак жидкий технический. Технические условия
- ↑ Priestley, Joseph. Observations on Alkaline Air // Experiments and Observations on Different Kinds of Air. — Second edition. — 1775. — Vol. I. — P. 163-177.
- ↑ Berthollet (1788). «Analyse de’l Alkali volatil». Histoire de l’Académie Royale des Sciences. Année M. DCCLXXXV. Avec les Mémoires de Mathématique & de Physique pour la même Année: 316-326.
- ↑ Малина И.К. Синтез аммиака // Книга для чтения по неорганической химии. Пособие для учащихся. Ч. II. — М.: Просвещение, 1975. — С. 52—62.
- ↑ Karl S. Roth, MD. eMedicine Specialties > Metabolic Diseases > Hyperammonemia. Проверено 7 июля 2009.
- ↑ Adjei, M. B.; Quesenberry, K. H. and Chamblis, C. G. Nitrogen Fixation and Inoculation of Forage Legumes. University of Florida IFAS Extension (June 2002). Архивировано из первоисточника 20 мая 2007.
- ↑ PubChem Substance Summary. Проверено 7 июля 2009.
- ↑ Zschocke, Johannes, and Georg Hoffman. Vademecum Metabolism. — Friedrichsdorf, Germany: Milupa GmbH, 2004.
- ↑ Rose, Burton, and Helmut Rennke. Renal Pathophysiology. — Baltimore: Williams & Wilkins, 1994. — ISBN 0-683-07354-0.
- ↑ Campbell Neil A. 44 // Biology. — 6th. — San Francisco: Pearson Education, Inc, 2002. — P. 937–938. — ISBN 0-8053-6624-5.
- ↑ http://www.rhbz.info/rhbz3.1.5.4.html Учебное пособие по РХБЗ. Характеристика аварийно химически опасных веществ
- ↑ ГОСТ 12.1.005-88. Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны
- ↑ СанПиН 2.1.2.1002-00. Санитарно-эпидемиологические требования к жилым зданиям и помещениям
- ↑ «Известия». Наука
- ↑ Ходаков Ю. В., Эпштейн Д. А., Глориозов П. А. § 19. Взаимодействие азота с водородом // Неорганическая химия. Учебник для 9 класса. — 7-е изд. — М.: Просвещение, 1976. — С. 38—41. — 2 350 000 экз.
- ↑ Гордон А., Форд Р. Спутник химика.//Перевод на русский язык Розенберга Е. Л., Коппель С. И. — М.: Мир, 1976. — 544 с.
- ↑ ФАКТОРЫ КОНКУРЕНТНОСТИ НА РЫНКЕ АММИАЧНО-НИТРАТНЫХ УДОБРЕНИЙ
- ↑ АММИАЧНЫЕ УСТАНОВКИ НА РОССИЙСКИХ ПРЕДПРИЯТИЯХ
- ↑ ПРОИЗВОДИТЕЛИ АММИАКА И КАРБАМИДА В РОССИИ (Часть I)
- ↑ ПРОИЗВОДИТЕЛИ АММИАКА И КАРБАМИДА В РОССИИ (Часть II)
- ↑ ПРОИЗВОДИТЕЛИ АММИАКА И КАРБАМИДА В РОССИИ (Часть III)
- ↑ Лукашенко потребовал ускорить модернизацию «Гродно Азота». 21.by
- ↑ Селитра аммиачная 095-2471996: Удар по гривне
- ↑ Селитра аммиачная 095-2471996: Наши химики — впереди российских
- ↑ Технология производства аммиака
- ↑ 1 2 Искусственное изменение окраски лепестков цветов. Удивительный мир растений
Литература
- Ахметов Н. С. Общая и неорганическая химия. — М.: Высшая школа, 2001.
- Карапетьянц М. Х., Дракин С. И. Общая и неорганическая химия. — М.: Химия, 1994.
- Акимова Л. Д. Изучающим основы холодильной техники. — М., 1996.
- Ельницкий А. П., Василевская Е. И., Шарапа Е. И., Шиманович И. Е. Химия. — Мн.: Народная асвета, 2007.
Ссылки
- Аммиак, газ // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Аммиак водный // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Аммониак // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Аммониемия // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- NIST Chemistry WebBook
- Искусственное изменение окраски лепестков цветов
- Запах аммиака в построенной квартире
аммиак, аммиак в краске для волос, аммиак википедия, аммиак гэж юу вэ, аммиак картинки, аммиак окисление, аммиак формула, аммиак шинж чанар, аммиак это, аммиак үйлдвэрлэл
Аммиак Информацию О
Аммиак Комментарии
Аммиак
Аммиак
Аммиак Вы просматриваете субъект
Аммиак что, Аммиак кто, Аммиак описание
There are excerpts from wikipedia on this article and video
www.turkaramamotoru.com
Аммиак: свойства и все характеристики
Характеристики и физические свойства аммиака
Аммиак очень хорошо растворим в воде: 1 объем воды растворяет при комнатной температуре около 700 объемов аммиака. Концентрированный раствор содержит 25% NH3 (масс.) и имеет плотность 0,91 г/см3. Раствор аммиака в воде иногда называют нашатырным спиртом. С повышением температуры растворимость аммиака уменьшается.
При низкой температуре из раствора аммиака может быть выделен кристаллогидрат NH3×H2O, плавящийся при -79oС. Известен также кристаллогидрат состава 2NH3×H2O.
Рис. 1. Строение молекулы аммиака.
Таблица 1. Физические свойства аммиака.
Молекулярная формула |
NH3 |
Молярная масса, г/моль |
17 |
Плотность, г/см3 |
0,6826 |
Температура плавления, oС |
195,42 |
Температура кипения, oС |
239,74 |
Растворимость в воде (0oС), г/100мл |
89,9 |
Получение аммиака
В лаборатории аммиак обычно получают6 нагревая хлорид аммония с гашеной известью:
2NH4Cl + Ca(OH)2 = CaCl2 + 2H2O + 2NH3↑.
Выделяющийся аммиак содержит пары воды. Для осушения его пропускают через натронную известь (смесь извести с едким натром).
Химические свойства аммиака
В химическом отношении аммиак довольно активен; он вступает во взаимодействие со многими веществами.
Если пропускать ток NH3 по трубке, вставленной в другую широкую трубку, по которой проходит кислород, то аммиак можно легко зажечь; он горит зеленоватым пламенем. При горении аммиака образуется вода и свободный азот:
4NH3 + 3O2 = 6H2O + 2N2.
При других условиях аммиак может окисляться до оксида азота NO.
При замещении в молекулах аммиака только одного атома водорода металлами образуются амиды металлов. Так, пропуская аммиак над расплавленным натрием, можно получить амид натрия NaNH2 в виде бесцветных кристаллов:
2Na + 3NH3 = 2NaNH2 + H2.
Аммиак реагирует с кислотами, находящимися в свободном состоянии или в растворе, нейтрализуя их и образуя соли аммония. Например, с соляной кислотой получается хлорид аммония NH4Cl:
NH3 + HCl = NH4Cl.
Взаимодействие аммиака с водой тоже приводит к образованию не только гидратов аммиака, но частично и иона аммония:
NH3 + H2O ↔ NH4+ + OH—.
Применение аммиака
Аммиак – одно из важнейших соединений азота: в больших количествах он расходуется в производстве азотных удобрений, взрывчатых веществ, полимеров, азотной кислоты и соды, используется в качестве холодильного агента в морозильных установках, а также в медицине.
Примеры решения задач
ru.solverbook.com
Физические и химические свойства аммиака
Формула – NH3. Молярная масса – 17 г/моль.
Физические свойства аммиака
Аммиак (NH3) – бесцветный газ с резким запахом (запах «нашатырного спирта»), легче воздуха, хорошо растворим в воде (один объем воды растворят до 700 объемов аммиака). Концентрированный раствор аммиака содержит 25% (массовых) аммиака и имеет плотность 0,91 г/см3.
Связи между атомами в молекуле аммиака – ковалентные. Общий вид молекулы AB3. В гибридизацию вступают все валентные орбитали атома азота, следовательно, тип гибридизации молекулы аммиака – sp3. Аммиак имеет геометрическую структуру типа AB3E – тригональная пирамида (рис. 1).
Рис. 1. Строение молекулы аммиака.
Химические свойства аммиака
В химическом отношении аммиак довольно активен: он вступает в реакции взаимодействия со многими веществами. Степень окисления азота в аммиаке «-3» — минимальная, поэтому аммиак проявляет только восстановительные свойства.
При нагревании аммиака с галогенами, оксидами тяжелых металлов и кислородом образуется азот:
2NH3 + 3Br2 = N2 + 6HBr
2NH3 + 3CuO = 3Cu + N2 + 3H2O
4NH3 +3O2 = 2N2 + 6H2O
В присутствии катализатора аммиак способен окисляться до оксида азота (II):
4NH3 + 5O2 = 4NO + 6H2O (катализатор – платина)
В отличие от водородных соединений неметаллов VI и VII групп, аммиак не проявляет кислотные свойства. Однако, атомы водорода в его молекуле все же способны замещаться на атомы металлов. При полном замещении водорода металлом происходит образование соединений, называемых нитридами, которые также можно получить и при непосредственном взаимодействии азота с металлом при высокой температуре.
Основные свойства аммиака обусловлены наличием неподеленной пары электронов у атома азота. Раствор аммиака в воде имеет щелочную среду:
NH3 + H2O ↔ NH4OH ↔ NH4+ + OH—
При взаимодействии аммиака с кислотами образуются соли аммония, которые при нагревании разлагаются:
NH3 + HCl = NH4Cl
NH4Cl = NH3 + HCl (при нагревании)
Получение аммиака
Выделяют промышленные и лабораторные способы получения аммиака. В лаборатории аммиак получают действием щелочей на растворы солей аммония при нагревании:
NH4Cl + KOH = NH3↑ + KCl + H2O
NH4+ + OH— = NH3↑+ H2O
Эта реакция является качественной на ионы аммония.
Применение аммиака
Производство аммиака – один из важнейших технологических процессов во всем мире. Ежегодно в мире производят около 100 млн. т. аммиака. Выпуск аммиака осуществляют в жидком виде или в виде 25%-го водного раствора – аммиачной воды. Основные направления использования аммиака – производство азотной кислоты (производство азотсодержащих минеральных удобрений в последствии), солей аммония, мочевины, уротропина, синтетических волокон (нейлона и капрона). Аммиак применяют в качестве хладагента в промышленных холодильных установках, в качестве отбеливателя при очистке и крашении хлопка, шерсти и шелка.
Примеры решения задач
ru.solverbook.com
Преимущества аммиака для применения в холодильных системах | Холод-проект
Аммиак (NH3) является наиболее перспективным среди природных веществ, которые используются в качестве рабочих тел в холодильных установках и знаком под обозначением R717. Ниже рассмотрим положительные и отрицательные свойства аммиака, как холодильного агента, в сравнении с фреонами.
Рис.1. Продолжительность использования хладагентов.
Аммиак относится к группе хладагентов среднего давления и применяется при температуре конденсации не выше 550С в одноступенчатых холодильных машинах до температуры кипения – 300С, в двухступенчатых – до – 600С. Диаграмма давление-энтальпия (P-i) представлена на рис. 2.
Рис. 2. Диаграмма энтальпия-давление (i—P) для аммиака.
Термодинамические характеристики аммиака и некоторых фреонов представлены в таблице 1.
Таблица 1. Термодинамические характеристики хладагентов.
Хладагент | Формула | Мол-ная масса μ, кг/кмоль | Норм. темпер. кипения ts, 0С | Крит. темпер. tкр, 0С | Крит. давл. Ркр, МПа | Теплота парообра-зования r, кДж/кг |
R717 | NH3 | 17,03 | -33,35 | 132,4 | 11,397 | 1360 |
R22 | CHF2Cl | 86,47 | -40,81 | 96,13 | 4,99 | 229 |
R134a | C2H2F4 | 102,03 | -26,3 | 101,5 | 4,06 | 215 |
R290 | C3H8 | 44,1 | -41,97 | 96,81 | 4,269 | 419 |
R507a | Азеотропная смесь: 50%R125, 50% R143а | 98,8 | -47,1 | 71 | 3,72 | 200,5 |
R410a | Азеотропная смесь: 50%R32, 50% R125 | 72,58 | -52,6 | 72,13 | 4,93 | 264,3 |
R744 | СО2 | 44 | -93,85 (-78,5*) | 31 | 7,38 | 94,53 (573,13*) |
* – нормальная температура и теплота сублимации соответственно.
Как видно из таблицы, аммиак обладает высоким значением теплоты парообразования, что позволяет уменьшить массовый расход хладагента, циркулирующего в системе холодильной установки, по сравнению с установками, работающими на фреоне (в сравнении с R22 – в 5,94 раза, R134a – в 6,32 раза). Особенно это качество аммиака актуально при создании холодильных установок большой мощности (холодопроизводительностью более 100 кВт).
Вследствие высокого значения показателя адиабаты для аммиака (k=1,31) для него характерна высокая температура нагнетания, которая может привести не только к разложению масла, но и к его вспышке. Это, также, ограничивает применение в аммиачных установках воздушных конденсаторов.
К маслам, используемым в аммиачных холодильных машинах, предъявляют жесткие требования в отношении их термической стабильности в присутствии воздуха, влаги и металлических катализаторов. Недостаточная термическая стабильность масел приводит к образованию амидов, образованию отложений и коксованию на горячих клапанах компрессора, эмульсий в испарителях.
Одним из недостатков аммиака является то, что он вызывает коррозию медных сплавов, особенно в присутствии влаги, поэтому трубопроводы, теплообменные аппараты и арматуру данных установок выполняют из стали.
Высокая электрическая проводимость аммиака (1,1·10-7 См/м) затрудняет создание полугерметичных и герметичных компрессоров, работающих на аммиаке.
Поскольку аммиак является веществом природного происхождения, то он, в отличие от большинства распространенных фреонов, не оказывает никакого загрязняющего воздействия на окружающую среду. Влияние различных хладагентов на окружающую среду представлено в таблице 2.
Таблица 2. Влияние различных хладагентов на состояние окружающей среды.
Наименование параметра | Значения | ||||||
R717 | R22 | R134a | R290 | R507a | R410a | R744 | |
Потенциал разрушения озонового слоя (ODP) | 0 | 0,05 | 0 | 0 | 0 | 0 | 0 |
Потенциал глобального потепления (GWP) | 0 | 1700 | 1300 | 3 | 3850 | 1890 | 1 |
Аммиак – это вещество с резким удушающим запахом, вредным для организма человека. Предельно допустимая концентрация R717 в рабочей зоне (ПДК) составляет 20 мг/м3, а опасное для жизни объемное содержание составляет 350…700 мг/м3. Аммиак горюч при его объемной концентрации в воздухе свыше 11% и взрывоопасен при концентрации в пределах от 15 до 28%, токсичен. Негативные свойства R717 заставляют принимать специальные меры, обеспечивающие безопасную эксплуатацию аммиачных холодильных установок, что требует от эксплуатирующей организации решения большего количества организационных и технических вопросов. При использовании фреоновых холодильных установок часть этих вопросов отпадает.
Между тем, вопросы безопасного использования аммиака успешно решаются за счет:
- использования современных систем с минимальной заправкой;
- использования систем промежуточного охлаждения;
- использования систем автоматики и предупреждения;
- вентиляция машинных отделений;
- обучение и сертификация персонала.
Резюмируя вышесказанное, можно сказать, что аммиак имеет хорошее будущее в качестве рабочего тела холодильных установок различной мощности. При его правильном использовании может быть обеспечен не только необходимый уровень безопасности, но и высокая эффективность установок.
Поделитесь с друзьями
holod-proekt.com
МИР КЛИМАТА №51 (2008) : Архив журнала : Главная
Согласно бытующему мнению, аммиак — ядовитое и взрывоопасное вещество. Однако на самом деле вред здоровью при контакте с аммиаком — скорее исключение, чем правило. Да и его взрывоопасность — заблуждение.
Как хладагент, аммиак обладает непревзойденными характеристиками, и отказываться от перспектив его использования — неразумно.
Аммиак
Аммиачные холодильные системы, разработанные в последние десятилетия в соответствии с современными нормами и правилами, соответствуют самым высоким стандартам безопасности. Более старые системы, напротив, могут быть ненадежны, а их использование — сопряжено с риском.
Эффективными и недорогими мерами по предотвращению утечек аммиака являются информирование и обучение персонала. В данной статье рассматривается аммиак с химической формулой Nh4, не содержащий воды (безводный), т.е. не являющийся вод-ным раствором аммиака (с содержанием аммиака около 20%). Безводный аммиак хранится в жидком виде под давлением.
Производство аммиака
Объем ежегодного оборота аммиака в природе составляет, как минимум, 3 миллиарда тонн. Человек в процессе жизнедеятельности производит около 17 граммов аммиака в сутки, корова — 1 тонну в год. Промышленным способом ежегодно получают около 150 миллионов тонн аммиака, из которых в качестве хладагента используется лишь около полумиллиона тонн.
Естественные потери аммиака на крупных холодильных установках традиционного типа составляют около 5-10% в год, в современных системах они значительно ниже — менее 1%.
Аммиак в качестве хладагента
Впервые аммиак был использован в компрессионной установке Дэвидом Бойлем в 1872 г. в США. В 1876 г. Карл фон Линде построил компрессионную холодильную машину для пивоваренного завода в Триесте [1]. Первоначально в качестве хладагента он предполагал использовать эфир, но тот взорвался прямо в лаборатории. Аммиак оказался более безопасным и с тех пор, благодаря уникальным термодинамическим свойствам, а также тому, что холодильные установки с его использованием оказались столь же эффективны, сколь и рентабельны, является доминирующим хладагентом в системах промышленного назначения.
Запах — существенное преимущество
Аммиак - единственный хладагент с характерным неприятным запахом, ассоциирующимся у людей с чувством страха. На первый взгляд, это достаточно веская причина, чтобы отказаться от его использования. Однако другого хладагента с такой энергетической эффективностью не существует. Вот почему изобретение технологии производства синтетического аммиака было признано одним из наиболее выдающихся достижений последнего столетия и отмечено Нобелевской премией [2].
А запах на самом деле — это скорее преимущество, поскольку даже самые малые утечки могут быть немедленно обнаружены и устранены.
Сравнение с некоторыми другими современными хладагентами
Технология применения аммиака отличается от использования других хладагентов из-за его высокой теплоты испарения. Низкая текучесть ограничивает использование аммиака для холодильных систем малой холодопроизводительности. Но в будущем аммиак может стать для них альтернативным хладагентом.
В таблице 1 представлены характеристики хладагентов в пересчете на 1 кВт холодопроизводительности при -15/+30°C [3].
Таблица 1
Сравнительные характеристики различных хладагентов
Хладагент | Химическая формула | Температура кипения, °C | Теплота испарения, кДж/кг | Расход по жидкости, дм3с | Расход по газу, дм3с | Холодильный коэффициент COP | Потенциал разрушения озона ODP | Потенциал глобального потепления GWP |
R134a | CH2FCF3 | -26, 2 | 217 | 0,0056 | 0,814 | 4,60 | 0 | 1300 |
R407C | 32/125/134a | -43, 8 -36,7 | 248 | 0,0055 | 0,492 | 4,51 | 0 | 1525 |
R410A | 32/125 | -51, 6 -51, 5 | 271 | 0,0058 | 0,318 | 4,41 | 0 | 1725 |
R507C | 125/143a | -47, 0 | 196 | 0,0089 | 0,461 | 4,18 | 0 | 3800 |
R717 (аммиак) | NH3 | -33, 3 | 1369 | 0,0015 | 0,463 | 4,84 | 0 | 0 |
R290 (пропан) | C3H8 | -42,1 | 426 | 0,0074 | 0,551 | 4,74 | 0 | 3 |
R744 (углекислый газ) | CO2 | -56, 6 | 350 | 0,0123 | 0,065 | 2,96 | 1 | 1 |
R718 (вода) | H2O | 100 | 2456 | ? | ? | ? | 0 | 0 |
Теплота испарения диоксида углерода определяется в тройной точке
-56,6°C.
R407 и R410 характеризуются «температурным скольжением».
Свойства хладагентов
До подписания Монреальского протокола свойства хладагентов описывались небольшим количеством параметров. С тех пор к ним добавились характеристики, касающиеся воздействия на окружающую среду, а также параметры зеотропных и азеотропных смесей и сверхкритических процессов. С учетом всех этих факторов, использование в промышленных системах, например гидрофтор-углеродов, признано нежелательным из-за сложности предотвращения утечек и слишком высокой стоимости замены.
Идеального хладагента не существует, и маловероятно, что он появится в обозримом будущем [4, 5].
Статистика аварий/несчастных случаев, связанных с использованием аммиака
Специальная литература по аммиачным холодильным системам существует уже более 100 лет. Однако, есть немало оснований полагать, что многие факты все еще не нашли в ней отражения. Потребность в подробной документации по использованию аммиака в качестве хладагента очевидна.
Количество аварий, связанных с утечкой аммиака, по отношению к общему количеству систем, невелико. Все происшествия такого рода, приведшие к смерти, учитываются (в США — последние 11 лет, в Великобритании — с 1986 г., в Швеции — c 1940 г.). Судя по этим данным, шанс в течение года умереть от аммиака есть лишь у двух человек из миллиарда. Для сравнения, по сведениям американских статистиков, вероятность в течение года погибнуть от удара молнии — 32 на миллиард. В результате травм на производстве в Швеции гибнет 5 человек из миллиона, из-за дорожных происшествий — 5 на 100 000.
Рис. 1 |
Кто страдает в результате контакта с аммиаком?
При изучении несчастных случаев с аммиаком становится ясно, что вред здоровью получают лишь те, кто находился в непосредственной близости от источника утечки. Как правило, это - обслуживающий персонал.
Неприятных последствий можно избежать, если использовать средства индивидуальной защиты, такие как комбинезоны, перчатки и полностью закрывающие лицо защитные маски.
Последствия несчастных случаев
Несчастные случаи, связанные с аммиаком, происходят не очень часто. Но каковы их последствия? Собрать подобные данные очень трудно. Выбросы аммиака вызывают серьезную тревогу в обществе и средствах массовой информации. Однако, как правило, никаких серьезных последствий для здоровья людей они не вызывают.
Так, осенью 2005 г. в Швеции огромный общественный резонанс получил выброс аммиака на холодильном хранилище в центре города. Сработал детектор утечки аммиака, были приведены в готовность местные спасательные и противопожарные службы. Но ничего серьезного не произошло, запаха не почувствовали даже жители соседних домов.
Неосведомленность
Негативное отношение к аммиаку является результатом неосведомленности, которая, в свою очередь, связана с тем, что 95% специалистов холодильной промышленности работают не с ним, а с другими хладагентами и системами. Руководители и проектировщики просто не знакомы с действующими нормами и стандартами по применению аммиака и, соответственно, не рассматривают его в качестве возможной альтернативы. Между тем соблюдение и выполнение соответствующих требований и директив делает использование аммиака удобным и безопасным.
Минимальная зарядка систем
Холодильная промышленность заинтересована в проектировании и постройке систем с минимально возможным объемом хладагента. Так обстоит дело в случае с гидрофторуглеродами, утечка которых нежелательна из-за высокой цены и экологической опасности.
Высокая удельная теплота парообразования и парциальное давление аммиака затрудняют его испарение, это значит, что он остается жидким, из-за этого утечка не может быть большой. Однако, сильный характерный запах создает у людей впечатление, что утечка гораздо серьезней, чем она есть на самом деле. В современных системах проблема утечек решается при помощи детекторов и секционирования.
Токсичность
Во всех описаниях аммиак представлен как ядовитое вещество, но что мы вкладываем в понятие «яд»? Как сказал швейцарский врач, химик и философ Парацельс (1493-1541 гг.), «в определенной дозировке ядовито любое вещество». По современному определению, яд — это вещество, которое даже в очень малых количествах представляет смертельную опасность для живых организмов.
Между тем аммиак - единственный хладагент, чей запах становится нестерпим задолго до того, как концентрация вещества становится опасной. В табл. 2 приведены данные по физиологическому воздействию аммиака на человека.
Таблица 2
Физиологическое воздействие аммиака на организм человека
Концентрация газа, ppm | Воздействие на человека без средств защиты | Реакция организма | Продолжительность воздействия и установленные уровни воздействия |
5* | Пороговое значение для обнаружения аммиака. Зависит от температуры — выполнение задачи облегчается при низкой температуре и в сухой воздушной среде | ||
20 | Большинство людей чувствуют характерный запах | Не опасен. Предупреждение! | В большинстве стран — не ограничено |
25-35 | Характерный запах | Не опасен. Предупреждение! | Предельно допустимая концентрация в большинстве стран. В США — предельно допустимая концентра-ция в воздухе производственного помещения |
50 | Явно ощутимый запах. У непривыкшего человека возникает жела-ние покинуть производственный участок | Не опасен. Предупреждение! | ATEL — во многих странах разре-шен 8-часовой рабочий день. В ряде стран 50 ppm являются пре-дельно допустимой концентрацией |
100 | На здорового человека неблагоприят-ного воздействия не оказывается. Неприятный запах может вызвать панику у не привыкшего к нему человека | Не опасен | Не следует находиться под воздей-ствием дольше, чем необходимо |
200 | Сильный запах | Не опасен | Предельная ядовитая концентрация, установленная в рам-ках Программы управления рисками (EPA RMP), США |
300 | Человек, имеющий опыт работы с аммиаком, стре-мится покинуть производственный участок | Не опасен, но опытный пер-сонал считает неприемле-мым продолжение работы | В США концентрация считается представляющей непо-средственную опасность для жизни или здоровья. При концентрациях ниже этого предела использование защитных масок в США не является обязательным. |
400-700 | Мгновенное раздражение глаз и дыхательной системы. Даже привыкший человек не может оставаться в помещении | В нормальных условиях какого-либо вреда здоровью нет, даже при продолжительности воздействия 30 мин | |
1700 | Кашель, спазм голосовых связок, серьезное раздраже-ние слизистой носа, глаз и дыхательной системы | При продолжительности воздействия 30 мин — опасность для здоровья, оказание срочной медицинской помощи | |
2000-5000 | Кашель, спазм голосовых связок, серьезное раздраже-ние слизистой носа, глаз и дыхательной системы | При продолжительности воздействия 30 мин и даже менее возможен смертельный исход | |
7000 | Потеря сознания, дыхательная недостаточность | Смерть в течение нескольких минут |
* — Концентрацию в 2-5 ppm (миллионных долей) можно обнаружить по запаху; воздействие зависит от индивидуальных особенностей организма, температуры и влажности воздуха. Преимущество низкого порога чувствительности к аммиаку состоит в том, что благодаря ему возможна своевременная эвакуация из опасной зоны. Даже люди, не чувствующие запаха, ощущают его болевое воздействие на слизистые оболочки и влажные участки кожи.
Воспламеняемость
Термин «взрывоопасное» используется в отношении веществ, возгорание которых характеризуется детонацией и быстрым распространением пламени. Согласно ISO 817 [7], при сгорании аммиака выделяется вдвое меньше энергии, чем при сгорании сжиженного нефтя-ного газа, а скорость распространения пламени составляет всего около 8 см/с.
Самовоспламенение аммиака возможно при температуре выше 651°C, и как хладагент он относится к группе B2 (низкая воспламеняемость). Аммиак способен гореть только в замкнутых пространствах, в силу чего классифицируется как неогнеопасный при использовании на открытом воздухе.
Для воспламенения аммиака требуется гораздо большая энергия, чем для возгорания других горючих веществ (14 мДж против 0,26 мДж для метана, этана и пропилена и 0,02 мДж — для газообразного водорода). Энергии разрядов в трехфазных электрических системах напряжением 440 Вольт недостаточно для воспламенения аммиака, и это является причиной отсутствия каких-либо требований по взрывобезопасности электрооборудования холодильных аммиачных систем.
Соответствие стандартам пожаробезопасности
Согласно директиве ATEX (Atmosphere Explosive — франц. «взрывоопасная среда»), холодильные системы с использованием аммиака не относятся к пожароопасным. Возникновение аварийных ситуаций внутри систем невозможно. Но в случае нарушения правил эксплуатации, при открытии системы или во время обслуживания может возникнуть угроза окружающей среде, поэтому к работе с огне-опасными веществами должен допускаться квалифицированный персонал, хорошо знающий свое дело.
В последней версии рекомендаций EN 378: 2007 [8] указано: «…в случае хладагентов с характерным запахом, например аммиака, при концентрациях ниже максимально допустимого на рабочем месте уровня, использование детекторов для определения токсичности не требуется». Даны предельные ограничения концентрации в 500 ppm и 30 000 ppm, «в целях предупреждения об опасности и возможности возникновения пожара». При достижении верхнего предела все электрооборудование, которое могло бы привести к воспламенению газовой смеси в воздушной среде, должно быть отключено. При этом могут использоваться взрывобезопасные вентиляторы и датчики систем обнаружения. Эти требования включены в стандарт DIN 8975-11 [9].
Воспламеняемая концентрация аммиака составляет 15-28%. Это очень высокое значение, и в помещении могут находиться только люди, полностью экипированные средствами химической защиты. Согласно стандартам безопасности, присутствие в таких помещениях открытого огня недопустимо. Лампы накаливания необходимо оборудовать брызгонепроницаемыми крышками, например пластмассовыми плафонами. Люминесцентные лампы также должны быть закрыты, хотя они и не нагреваются при работе.
Распространение огня носит кратковременный характер и зависит от объема помещения. Уже через несколько секунд после возгорания соотношение аммиака и атмосферного кислорода становится пожаробезопасным, и если пламя не успело перекинуться на другие горючие вещества — оно гаснет.
Характеристики аммиачных систем при пожаре
При пожаре в зданиях с аммиачными установками возгорание аммиака не представляет особой угрозы. Его тепловая энергия и скорость распространения пламени низкие, что дает возможность избежать серьезного ущерба в результате утечки.
Вытекающий аммиак в таких случаях поднимается вверх за горючими газами, а его воздействие на окружающее пространство, если оно вообще имеет место, сводится лишь к распространению неприятного запаха. Следует заметить, что продукты сгорания аммиака, азот и вода, полностью безопасны для окружающей среды. В этом отношении он резко отличается от гидрофтор-углеродов. При их сгорании образуется фтористоводородная кислота, которая имеет высокую коррозионную активность и чрезвычайную токсичность.
Нормы и правила техники безопасности
Благодаря опыту использования аммиака, накопленному на протяжении более 150 лет, современные аммиачные холодильные системы имеют высокий уровень безопасности, кроме того, характерный запах позволяет быстро обнаружить любую аварию.
Первые директивы по безопасности холодильных установок были выпущены в США уже в 1918 г. За ними последовал выпуск нормативов в Германии в 1933 г. и издание Шведского сборника норм и правил эксплуатации холодильной техники в 1942 г. Сегодня в большинстве стран имеются свои стандарты. В США действуют ASHRAE 15 и ANSI/IIAR 2, в Европе действует стандарт EN 378: 2000 [8] и директивы по машинному оборудованию (MD), оборудованию, работающему под давлением (PED), и оборудованию, используемому во взрывоопасных средах (ATEX).
Вентиляция машинных отделений
Стандарты по холодильным установкам регламентируют параметры вентиляции в помещении, где размещается оборудования для работы с аммиаком. Вентиляция требуется для удаления избыточного тепла и недопущения уровня концентрации, при котором возможно воспламенение.
Часто спасательные службы запрещают использование вентиляции в машинных отделениях, чтобы избавить жителей соседних домов от едкого запаха. Но это противоречит требованиям к условиям труда на рабочем месте.
Хорошие перспективы для холодильной промышленности
В прошлом холодильная промышленность отказывалась в полной мере использовать аммиак, считая его небезопасным. Все уверения о том, что этот хладагент легок в обращении и не опасен при соблюдении определенных правил и норм, оставались без внимания.
Наибольшие затраты в случае выбросов аммиака связаны с очисткой, восстановлением отношений с общественностью и продолжением производства. Скрыть запах аммиака в случае утечки невозможно, а средства массовой информации «раздувают» это событие, придавая ему намного большее значение, чем жители соседних домов. В случае серьезного выброса расстояние, на котором можно почувствовать запах при плохих погодных условиях, составляет 1500 м. А средства массовой информации в течение нескольких часов «разносят» этот запах по всему миру.
Сравнение рабочих характеристик холодильных установок
Профессор Иоахим Пауль из Датского технического университета произвел сравнение оптимальных рабочих характеристик холодильных установок с водяным охлаждением от ведущих мировых производителей (табл. 3). Анализ выполнен при условии чистых поверхностей теплообменника (согласно данным из различных источников, процессы образования накипи и закупоривания могут приводить к понижению эффективности от 8% до 20%).
R 134a | R 717 (аммиак) | R 718 (вода) | |
Температура охлажденной воды (вход/выход), °C | 12/6 | 12/6 | 12/6 |
Температура охлаждающей воды (вход/выход), °C | 19/24 | 19/24 | 19/24 |
Температура испарения/конденсации, °C | 4,3/27,1 | 3,0/27,0 | 5,0/25,0 |
Перепад давления | 2,1 | 2,2 | 3,6 |
Массовый расход хладагента, кг/с /в % по отношению к R134a | 6,2 | 0,9/15 | 0,4/ 6 |
Объемный расход хладагента, м3с/ в % по отношению к R717 | 1,320/161 | 822 | 220,115/26,778 |
Потребляемая мощность, кВт | 141 | 125 | 101 |
Холодильный коэффициент СОР | 7,1 | 8,0 | 9,9 |
Мощность по вакууму, кВт | 0 | 0 | 12 |
Полная потребляемая мощность, кВт | 141 | 125 | 113 |
Полный СОР/ в% по отношению к R134a | 7,1 | 8,0/ 113 | 8,9/ 125 |
Таблица 3
Сравнение рабочих характеристик установок холодопроизводительностью 1000 кВт на различных хладагентах
Это сравнение показывает, что аммиак является более эффективным хладагентом для применения в холодильных установках, чем R134a. Однако лучший вариант — использование воды в открытом холодильном цикле, где, при отсутствии теплообменника, не образуется накипь и нет закупоривания.
Будущее аммиака
Будущее аммиака, в силу его превосходных свойств как хладагента, видится безоблачным. Он всегда был лучшим выбором для крупных промышленных установок. Хорошие перспективы и у углекислого газа, в некоторых случаях его применение даже предпочтительнее - из-за большей простоты обеспечения безопасности. Особенно интересен и эффективен (в том числе и для температур ниже -40°C) комбинированный вариант с использованием аммиака и углекислого газа. Также очевидно, что прекрасным хладагентом для применения в системах кондиционирования воздуха, помимо аммиака, является вода.
Общественное давление на гидрофторуглероды усиливается, и это приведет к разработке новых технических решений на основе натуральных хладагентов, одним из которых является аммиак. При его правильном использовании может быть обеспечен не только необходимый уровень безопасности, но и высокая рентабельность установок.
Список литературы:
- Тевено Р. История развития холодильной техники в мире. — IIR, Париж, 1979.
- Кавалли Д.. — Habers Nobelpris Amqvist & Wiksell, Швеция, 2004.
- Справочное руководство Американского общества инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE). Основные положения, 2001.
- Кальм Д.М. Безопасность холодильных систем. — ASHRAE Journal, июль 1994, с. 17-26.
- Кальм Д.М. Четыре «R». Отзывы на выпуск норм и правил в области холодильной техники. — Engineered Systems, октябрь 2003.
- Бельке Д. Риски химических аварий в американской промышленности. — Предварительный анализ рисков аварий на опасных химических предприятиях США. — U.S. EPA, сентябрь 2000.
- Жаббур Т. и Клодик Д. ISO 817, TC86/SC8/WG5. — Арлингтон, Вирджиния, США, сентябрь 2003.
- EN 378: 2007. Стандарт EN 378: 2000 не был гармонизирован в отношении директив MD и PED.
- DIN 8975-11 Kälteanlagen und Wärmepumpen mit dem Kältemittel Ammoniak.
Материал подготовлен компанией «Альфа-Лаваль»,
статья предоставлена журналом «Холодильный Бизнес»
mir-klimata.info