рабочая распределительная монтажная арматура хомуты
Как указывалось ранее, в качестве арматуры употребляют главным образом круглую сталь и сталь периодического профиля в виде отдельных прутков диаметром до 40 мм, а также сваренную или связанную в арматурные каркасы.
Для элементов массивных железобетонных гидротехнических сооружений, например шлюзов, имеющих большие размеры сечений, целесообразно применять стержни крупных диаметров до 90—120 мм. Кроме круглой стали, в качестве арматуры применяют сталь и других профилей.
По назначению в бетоне арматуру разделяют на рабочую, распределительную, монтажную и хомуты.
Рабочая арматура воспринимает на себя главным образом растягивающие усилия, возникающие в железобетонных конструкциях от собственного веса и внешних нагрузок.
Распределительная арматура служит для равномерного распределения нагрузок между рабочими стержнями и для обеспечения совместной работы всех стержней арматуры.
Распределительная арматура соединяется с рабочей сваркой или проволочной скруткой, в результате чего образуется сетка или каркас.
Хомуты служат для предохранения от появления косых трещин в балке около опор и для связывания арматуры в каркас.
Монтажная арматура никаких усилий не воспринимает и служит как для сборки каркаса, так и для обеспечения во время бетонирования точного положения рабочей арматуры и хомутов. При бетонировании монтажная арматура иногда вынимается.
Рис. 42. Типы крюков на концах гладких арматурных стержней: 1 — полукруглый крюк прп машинном гнутье: 2 — полукруглый крюк с прямым участком прн ручном гнутье
Для лучшего закрепления арматуры в бетоне концы арматурных стержней, работающих на растяжение, делают загнутыми в виде крюков (рис. 42).
Арматура периодического профиля (см.
главу VI), благодаря надежной анкеровке и повышенному сцеплению с бетоном, позволяет отказаться от крюков, что способствует экономии металла.Для совместной работы арматуры с бетоном необходимо, помимо устройства крюков, оставлять вокруг каждого стержня слой бетона; для этого расстояние в свету между отдельными рядами арматурных стержней делается не меньше 25 мм, как показано на рис. 43. На этом же рисунке показан так называемый защитный слой бетона (между арматурными стержнями и поверхностью конструкции), предохраняющий арматуру от воздействия огня при пожаре и от ржавления.
Рис. 43. Расстояние между стержнями арматуры и величина защитного слоя бетона в железобетонной балке и плите (размеры в мм): а — армированной обычной арматурой: 1 — монтажные стержни; 2 — рабочие стержни плиты; 3 — распределительные стержни плиты; 4—рабочие стержни балки; б — армированной сварными сетками и каркасами: 1 — каркасы балки; 2 — сетки плиты
В соответствии с техническими условиями толщина защитного слоя для рабочей арматуры конструкций из тяжелого бетона должна быть:
а) в плитах и стенках толщиной до 10 см — не меньше 10 мм;
б) в плитах и стенках толщиной более 10 см и в ребрах перекрытий — не меньше 15 мм;
в) в балках и колоннах при диаметре продольной арматуры до 20 мм — не меньше 20 мм, а при диаметре арматуры более 20 мм — не меньше 25 мм.
При диаметре продольной арматуры более 35 мм рекомендуется толщина защитного слоя не менее 30 мм, а при применении фасонных прокатных профилей — 50 мм.
Хомуты и поперечные стержни должны отстоять от поверхности бетона не меньше чем на 15 мм. В железобетонных трубах расстояние от стержня продольной арматуры до внутренней поверхности трубы должно быть не меньше, чем до наружной.
В сборных железобетонных конструкциях заводского изготовления из тяжелого бетона марки не менее 200 толщина защитного слоя может быть уменьшена на 5 мм, но в любом случае должна быть не меньше 10 мм для плит и 20 мм для балок и колонн.
Классификация арматуры и технические требования к сталям
Классификация арматуры и технические требования к сталям
Классификация арматуры. Арматура железобетонных конструкций воспринимает в основном растягивающие усилия. Это дает возможность, применяя ее совместно с бетоном, изготовлять железобетонные конструкции разнообразного назначения. Из железобетона выполняют конструктивные элементы зданий и сооружений, работающие не только на сжатие, например колонны, но и на изгиб и растяжение — плиты, балки, фермы для перекрытия больших пролетов. Стальную арматуру классифицируют по назначению, способу изготовления и последующего упрочнения, форме поверхности и способу применения.
По назначению различают арматуру рабочую и монтажную. Рабочая арматура воспринимает усилия, возникающие под действием нагрузок на конструкцию. Количество арматуры рассчитывают в соответствии с этими нагрузками. В зависимости от ориентации в железобетонной конструкции рабочая арматура может быть продольной или поперечной.
Продольная рабочая арматура воспринимает усилия растяжения или сжатия, действующие по продольной оси элемента. Например, в изображенной на рис. 15 балке, опирающейся по концам, продольная рабочая арматура выполнена из стержней, которые сопротивляются растягивающим усилиям в нижней зоне конструкции. Для восприятия усилий, действующих при изгибе под углом 45° к продольной оси балки, стержни отгибают.
В колоннах продольную арматуру устанавливают для повышения сопротивляемости усилиям сжатия.Рис. 15. Армирование балки:
1 — распределительная арматура, 2, 3. 5 — продольные рабочие арматурные стержни, 4 — поперечная арматура (хомуты), 6 — монтажные петли
Поперечная арматура воспринимает усилия, действующие поперек оси балки. Такую арматуру выполняют в виде хомутов либо расположенных поперечно отрезков стержней в сварных каркасах и сетках.
Монтажную арматуру устанавливают в зависимости от конструктивных и технологических требований. Ее подразделяют на распределительную и конструктивную. Распределительная арматура позволяет закреплять рабочую арматуру в проектном положении. В этом важное технологическое значение распределительной арматуры. Кроме того, она служит для более равномерного распределения усилий между отдельными стержнями рабочей арматуры. Стерэкни рабочей и распределительной арматуры сваривают либо связывают в единый пространственный каркас или плоские сетки.
Конструктивная арматура служит для восприятия таких усилий, на которые конструкцию не рассчитывают. В частности, сюда относятся усилия от усадки бетона, температурных изменений. Конструктивную арматуру обязательно устанавливают в местах резкого изменения сечения конструкций, где происходит концентрация напряжений. Конструкции, подвергающиеся действию динамических нагрузок, например подкрановые балки и консоли колонн, на которые они опираются, также нуждаются в конструктивной арматуре.
По способу изготовления стальную арматуру железобетонных конструкций подразделяют на горячекатаную стержневую и холоднотянутую проволочную.
Стержневую арматуру поставляют в прутках диаметром не менее 12 мм и длиной до 13 м, проволочную диаметром З…8мм — в мотках или бунтах массой до 1300 кг.
По способу последующего упрочнения горячекатаная арматура может быть термически упрочненной, т. е. подвергнутой термической обработке, или упрочненной в холодном состоянии — вытяжкой, волочением.
По форме поверхности различают арматуру периодического профиля и гладкую. Стержни арматуры периодического профиля снабжены выступами, благодаря которым улучшается сцепление ее с бетоном. На поверхности проволочной арматуры для этой цели создают рифы (вмятины). Гладкую арматуру выпускают в виде горячекатаных стержней диаметром 6…40 мм или проволоки диаметром 3…8 мм. Чтобы исключить проскальзывание гладкой арматуры в бетоне, ее заанкери-вают.
По способу применения при армировании железобетонных конструкций различают напрягаемую арматуру, подвергаемую предварительному натяжению, и ненапрягаемую.
В некоторых случаях используют так называемую жесткую арматуру в отличие от обычно применяемых гибких стержней и проволоки. Жесткую арматуру выполняют из сортового проката — швеллеров, двутавров, равнобоких и неравнобоких уголков. До отвердевания бетона такая арматура работает как металлическая конструкция на нагрузку от собственного веса, веса прикрепляемой к ней опалубки и свежеуложенной бетонной смеси. Жесткую арматуру применяют при бетонировании большепролетных перекрытий, сильно загруженных колонн нижних этажей многоэтажных зданий.
Рис. 16. Сцепление арматуры с бетоном:
1 — бетон, 2—гладкая арматура, 3 — арматура периодического профиля
Технические требования к арматурной стали. К ним относятся требования по прочности, пластичности, свариваемости, хладноломкости.
Прочность определяют путем испытания образцов стали на растяжение. Основной характеристикой прочности малоуглеродистых арматурных сталей служит предел текучести.
Прочность горячекатаной стержневой арматурной стали существенно — в несколько раз — повышают термическим или термомеханическим упрочнением, проволочной — холодным деформированием. Термическое упрочнение состоит из закалки и частичного отпуска стали. Закалку осуществляют нагревом стержней до температуры 800…900 °С и быстрым охлаждением, отпуск — нагревом до температуры 300…400 °С и постепенным охлаждением. Термомеханическое упрочнение производят путем нагрева, пластического деформирования и последующей термообработки арматуры. Это повышает прочность стержневой арматуры до 1800 МПа.
Проволочную арматурную сталь упрочняют холодным деформированием, пропуская ее через несколько последовательно уменьшающихся в диаметре отверстий. Чтобы получить структуру стали, необходимую для такого холодного волочения, проволоку подвергают предварительной термообработке — патентированию. Оно заключается в нагреве проволоки до температуры 870…950 °С, быстром охлаждении до температуры 500 °С, выдержке и охлаждении на воздухе. По такой технологии изготовляют высокопрочную арматурную проволоку.
Прочностные характеристики арматуры нормируют, как правило, по сопротивлению растягивающим усилиям. В некоторых конструкциях арматуру используют как элемент, усиливающий работу бетона на сжатие. В этом случае нормируют сопротивление арматуры сжатию. Его принимают равным расчетному сопротивлению при растяжении, но не более 400 МПа.
Пластические свойства арматурных сталей важны для нормальной работы железобетонных конструкций под нагрузкой, механизации арматурных работ. Снижение пластических свойств стали может стать причиной хрупкого (внезапного) разрыва арматуры в конструкциях, хрупкого излома напрягаемой арматуры в местах резкого перегиба или при закреплении в захватах. Поэтому пластические свойства арматурных сталей обязательно нормируют. Пластичность характеризуют полным относительным удлинением после разрыва образца, %, а также по результатам испытания на загиб в холодном состоянии.
Свариваемость арматурных сталей характеризуется надежным сварным соединением, отсутствием трещин и других пороков металла в швах и прилегающих зонах. Это свойство используют при изготовлении сварных каркасов и сеток, стыковке стержневой арматуры. Горячекатаные малоуглеродистые и низколегированные арматурные стали свариваются хорошо. Нельзя сваривать стали, упрочненные термически или вытяжкой, так как в результате сварки эффект упрочнения утрачивается: в термически упрочненной стали происходят отпуск и потеря закалки, а в проволоке, упрочненной вытяжкой, — отжиг и потеря наклепа.
Хладноломкость характеризуется склонностью арматурных сталей к хрупкому разрушению при температурах ниже —30 °С. Хладноломкостью обладают горячекатаные стали периодического профиля, изготовленные из полуспокойной мартеновской или конвертерной стали. Менее склонны к хрупкому разрушению при низкой температуре термически упрочненные арматурные стали, а также высокопрочная проволока.
Читать далее:
Теплоизоляционные материалы
Основные свойства строительных материалов
Фиксаторы арматуры
Материалы для смазывания форм
Сборные бетонные и железобетонные конструкции
Арматурные изделия и закладные детали
Проволочная арматура
Стержневая арматура
Обработка давлением
Термическая и химико-термическая обработка стали
Как работает арматура
Что такое арматура?
Арматура состоит из ряда основных компонентов; сердечник, коммутатор, обмотка и вал.
О сердечнике
Сердечник арматуры состоит из множества тонких металлических пластин, называемых пластинами , которые обычно имеют толщину около 0,5 мм. Толщина пластин зависит от частоты, на которую рассчитан якорь.
Пластины штампуются на прессе. Они имеют круглую форму с отверстием, выбитым в центре, через которое вдавливается вал, и выштампованными прорезями по краю, где в конечном итоге будут сидеть катушки. Пластины выравниваются и укладываются вместе, чтобы получить сердцевину.
Вместо цельного куска стали сердечник состоит из многослойных пластин, чтобы уменьшить количество энергии, теряемой в виде тепла в сердечнике. Потери энергии, известные как потери в железе , вызваны вихревыми токами , которые представляют собой небольшие вращающиеся магнитные поля, формирующиеся в металле из-за повторяющихся вращающихся магнитных полей, которые устанавливаются во время работы устройства. При использовании пластин вихревые токи могут образовываться только в одной плоскости, что значительно снижает потери.
Затем сердечник прижимается к валу, который обычно удерживается на месте с помощью грубой накатки на валу. Некоторые старые арматуры имеют резьбу, навернутую на вал и скрепленную болтами.
О коллекторе
Коллектор напрессован на вал и удерживается крупной накаткой так же, как и сердечник.
Коллектор состоит из медных шин, отделенных друг от друга изоляционным материалом. Этот изоляционный материал обычно представляет собой термореактивный пластик, но в более старых арматурах использовалась листовая слюда.
Коллектор должен быть точно выровнен с прорезями сердечника при надавливании на вал, так как провода от каждой катушки будут выходить из прорезей и соединяться с шинами коллектора. Для эффективной работы магнитной цепи важно, чтобы катушки в якоре имели правильное угловое смещение от коллекторной шины, к которой она подключена.
Об обмотках
Перед началом процесса намотки пазы в сердечнике изолируются, чтобы медный провод в пазах не соприкасался с ламинированным сердечником.
Катушки вставляются в пазы якоря и поочередно подключаются к коммутатору. Это можно сделать разными способами в зависимости от конструкции арматуры.
Обычно существует два типа арматуры, они обозначаются как Lap Wound и Wave Wound .
В круговой обмотке конечный конец одной катушки соединен с сегментом коммутатора и с начальным концом соседней катушки. В волновой обмотке два конца каждой катушки соединены с сегментами коммутатора, разделенными расстоянием между полюсами. Это позволяет последовательно добавлять напряжения во всех обмотках между щетками. Для этого типа намотки требуется только одна пара щеток. В арматуре, намотанной внахлестку, количество дорожек соответствует количеству щеток и полюсов.
В некоторых конструкциях якоря могут быть две или три отдельные катушки в одном слоте, соединенные с соседними сегментами коммутатора. Это делается, если напряжение, необходимое на этой катушке, считается слишком высоким. При распределении напряжения по трем отдельным катушкам и сегментам, даже если три катушки находятся в одном слоте, напряженность поля в слоте может быть такой же высокой, как если бы была только одна катушка, но это уменьшит искрение на коммутаторе. , и сделать машину более эффективной.
Во многих арматурах прорези также скошены, это достигается за счет того, что каждая пластина слегка выходит за пределы одной линии. Это сделано, чтобы уменьшить зубчатое зацепление и обеспечить более плавное вращение от одного полюса к другому.
О валу
Вал представляет собой жесткий стержень из концентрически обработанной стали, установленный между двумя подшипниками, которые определяют ось для установленных на нем компонентов. Он должен быть достаточно толстым, чтобы передавать крутящий момент, требуемый машине, и достаточно жестким, чтобы контролировать любые неуравновешенные силы. Его длина, опорные точки и скорость выбираются таким образом, чтобы свести к минимуму гармонические искажения.
Как работает арматура?
Вращение якоря обусловлено взаимодействием двух магнитных полей. Одно магнитное поле создается обмоткой возбуждения (в некоторых машинах, например, в двигателях стеклоочистителей, обмотка возбуждения заменена постоянным магнитом). Второе поле создается якорем при подаче напряжения на щетки, контактирующие с коммутатором.
Когда ток проходит через обмотку якоря, он создает магнитное поле. Это магнитное поле не совпадает с полем, создаваемым катушкой возбуждения. Это вызывает силу притяжения к одному полюсу и отталкивания от другого. Поскольку катушка возбуждения зафиксирована на месте, эта сила заставляет якорь двигаться. Поскольку коммутатор прикреплен к валу, он также перемещается на тот же градус и при этом переключает полюса. Якорь продолжает пытаться преследовать магнитный полюс, заставляя его вращаться.
Если к щеткам приложено не напряжение, а возбуждается поле и якорь приводится в действие механически, то якорь (который имеет полную цепь через все свои катушки посредством соединений на коммутаторе) будет под действием проводов разрезая линии магнитного потока, создаваемые обмоткой возбуждения, генерируют напряжение в обмотках якоря. Это напряжение будет переменным, потому что оно приближается к проходам, а затем удаляется от полюса. Но коммутатор, прикрепленный к валу, постоянно меняет полярность при вращении, так что фактический выходной сигнал, видимый на щетках, представляет собой постоянный ток. Вот так якорь работает как динамо.
Главная — Арматура
Классический хоррор на выживание, переосмысленный в VR
Проверьте это
Повествовательное приключение между правдой и вымыслом
Проверьте это
ГЕНЕЗИС DLC Часть 1
Проверьте это
10-летие издание
Проверьте это
Теперь доступно на Oculus Quest, Rift и Rift S!
Проверьте это
Битва строится!
Проверьте это
Смешивание на Oculus Quest
Проверьте это
Неистовый Quacktion для четырех игроков
Проверьте это
Обзор
Armature Studio, основанная ключевыми участниками франшизы Metroid Prime, занимается созданием игр в Остине, штат Техас, с 2008 года.