Ионисторы вместо аккумуляторов – Может ли ионистор заменить аккумулятор? / Habr

Содержание

Суперконденсаторы вместо аккумулятора в автомобиле


Суперконденсатор или ионистор — это что-то нечто среднее между аккумулятором и обычным конденсатором. У него много плюсов, которыми не обладает аккумуляторная батарея. Поэтому, я познакомлю вас с полностью рабочим прототипом батареи для машины на ионисторах. С помощью него можно не просто завести двигатель пару раз, а вполне полноценно эксплуатировать автомобиль неограниченное время.

Понадобится



Этого хватит для первого опытного образца.

Первое испытание с запуском двигателя


Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.
Собрал все воедино.

Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.
Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.

После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.
В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.
В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.

Схема


Вот схема второго прототипа батареи.

Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.
Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.

На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.
А заряжается аккумуляторная батарея через контроллер зарядки.

Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.
Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.

Полностью рабочий экземпляр батареи на суперконденсаторах


Собрал всю схему в пластиковой коробке. Временно естественно, чисто покататься и испробовать новшество.

Вид устройства с верху.

Защитный контроллер.

Мощный токоограничивающий резистор.

Цифровой вольтметр виден через пластик.

Устанавливаем на автомобиль вместо штатной батареи.

Включаем зажигание и пробуем произвести пуск двигателя.

Мотор запустился быстро, без каких либо проблем.

Производится зарядка ионисторов и аккумуляторной батареи, о чем свидетельствуют показания вольтметра.

Заключение


Теперь поподробнее о достоинствах и недостатка:
Плюсы:
  • В отличии от аккумулятора суперконденсаторы надежнее справляются с пиковым пусковым током. Пуск получается надежнее.
  • Низкое напряжение вполне является рабочим.
  • Имеет низкий вес, от чего всю коробку можно запросто таскать домой на всякий случай.
  • Для пуска можно произвести зарядку даже от батареек и спокойно ехать в путь.

Минусы:
  • Большой саморазряд. Передвигаться конечно можно, но если необходимо на короткий срок включить габариты или аварийную сигнализацию — мало на что хватит энергии, при заглушенном двигателе естественно.

Ну это то что пришло в голову. Теперь о стоимости. На Али Экспресс супер конденсаторы стоят не так уж и дорого. И если посчитать их 6 и балансную защиту, то выйдет дешевле чем кислотный аккумулятор.
На этом у меня все. Надеюсь мой эксперимент был для вас познавательным и интересным. Удачи всем!

Смотрите видео


sdelaysam-svoimirukami.ru

Суперконденсаторы вместо аккумуляторов: преимущества

По своим основным характеристикам суперконденсаторы значительно отличаются от простых привычных конденсаторов. В них применены современные технологии, которые позволяют добиться увеличения срока службы, а также снизить токовые потери в процессе эксплуатации. Основной задачей производителей данных устройств является разработка, и создание изделий способных заменить аккумуляторы во многих отраслях.

Применение двойного электрического слоя

Продолжительное время обладателями высоких значений внутренней емкости являлись конденсаторы электролитического вида. В различных устройствах изготавливались разнообразные обкладки, у одних они производились из металла, в других в виде электролита, где изоляцией являлся оксид используемого металла. Причем у обыкновенных конденсаторов внутренняя емкость имеет значение значительно ниже и равна долям фарада, чего на практике недостаточно для питания потребителей вместо аккумуляторных батарей.

Для обеспечения питания для электропотребителей были разработаны устройства на основе применения двойного электрического поля. Данное явление может возникать на границах материала или вещества при определенных условиях в жидком или твердом состоянии. В результате образуются два слоя разнополярных ионов одинакового размера, получается своеобразный конденсатор с электродами, между которыми образуется минимальное расстояние равное нескольким атомам.

Интересно знать! Устройства, полученные таким способом, называют ионисторами, а также суперконденсатор или ультраконденсатор.  

Техническая реализация

Ионистор или суперконденсатор представляет собой устройство в конструкции которого имеются два электрода или пластины, изготовленные из активированного угля. Пространство между ними заполнено специальным электролитом, также между обкладками располагается мембрана, благодаря которой не происходит перемещение частиц электродов, а электролит свободно проникает в данное пространство.

Причем стоит отметить, что самостоятельно данные устройства не имеют определения полярности заряда конкретных электродов. Это свойство является одним из главных отличий от конденсаторов электролитического вида, в которых несоблюдение правильного подключения приводило к преждевременному выходу из строя. Однако при производстве на ионисторах наносится маркировка с указанием полярности, в результате того, что в процессе производства данные накопители энергии уже выходят заряженные.

Разновидности суперконденсаторов

В настоящее время все ультраконденсаторы разделяют на три основных вида:

  1. Двухслойные.
  2. Гибридные.
  3. Псевдоконденсаторы.

Двухслойные конденсаторы

Данные устройства представляют собой изделие в конструкции которых применяются электроды с наличием пор, покрытых углеродом повышенной проводимости между ними находится специальный сепаратор. Благодаря разделению зарядов на электродах происходит образование значительного значения потенциала, в результате чего происходит накопление энергии.

Интересно знать! На величину емкости оказывает непосредственное влияние значение двойного слоя.

Двойной слой в такой конструкции выполняет роль конденсатора поверхностного. Благодаря электролиту два слоя объединяются в последовательную цепочку.

Гибридный суперконденсатор

Данный вид накопителей электроэнергии считается промежуточным между аккумуляторами и конденсаторами. В конструкции таких устройств применяются электроды, изготовленные из различных материалов, в результате чего емкость заряд накапливается разными способами.

Непосредственно сам процесс восстановления заряда происходит благодаря реакции окислительно-восстановительного вида. Такая конструкция позволяет значительно увеличить внутреннюю емкость и повысить рабочее напряжение. Электроды состоят из соединения сложных проводящих полимеров, которые в сочетании между собой представляют материал повышенных электрических характеристик.

 Псевдоконденсаторы

Данные устройства представляют собой изделия несколько похожие по свои основным характеристикам на АКБ, они имеют два твердых электрода.

В результате чего стало возможным применять конденсатор вместо аккумулятора. Принцип действия состоит из двух основных механизмов:

  • рабочие циклы заряд-разряд;
  • электростатические реакции, которые наблюдаются в устройствах с двойным слоем.

Интересно знать! Емкость псевдоконденсаторов зависит от реакций переноса электролитических зарядов.

Основные параметры

К основным характеристикам суперконденсатора следует отнести:

  • время заряда, имеет малое значение и равно от 1 с до 10 с;
  • в сравнении с кислотными аккумуляторами имеют значительное число рабочих циклов, практически более 30000 часов;
  • номинальное рабочее напряжение имеет значение до 2,75 В;
  • срок службы до 15 лет;
  • диапазон рабочих температур от -45°С до +65°С;
  • удельная энергоемкость имеет значение до 5 Вт*ч/ кг.

Энергетическая плотность

Способность ионисторов накапливать энергию ниже, чем у кислотных аккумуляторных батарей. Значение энергии зависит от внутреннего сопротивления устройства, чем оно ниже, тем выше плотность энергии. Современные разработки позволяют применять такие материалы как азот и графен, благодаря которым удалось добиться значительного увеличения внутренней плотности энергии.

Преимущества и недостатки

Как и любое электронное устройство ионисторы в процессе эксплуатации имеют некоторые достоинства и недостатки. К преимуществам производители относят:

  • Имеют пониженную удельную стоимость, если сравнивать емкость конденсатора и аккумулятора.
  • Повышенные показатели внутренней емкости, в результате чего увеличивается количество рабочих циклов заряд-разряд.
  • Более надежные, а также имеют большой срок службы в отличие от кислотных и литиевых аккумуляторов.
  • Отличаются экологической чистотой, благодаря применяемым материалам.
  • Повышенные значения номинальной мощности.
  • Возможность эксплуатирования в широком температурном диапазоне. Низкие температуры не помеха при запуске оборудования любого вида.
  • Значительно увеличенный временной промежуток при восполнении заряда и при рабочем разряде.
  • В отличие от аккумуляторных батарей имеют возможность полного разряда практически до нулевого значения рабочего напряжения.

Интересно знать! Суперконденсаторы имеют сравнительно малые размеры относительно других подобных приборов.

Однако при наличии многих плюсов в процессе эксплуатации присутствуют и минусы. К недостаткам относят:

  • Малая плотность энергетических накоплений относительно аналогичных устройств.
  • Пониженное значение напряжение на единицу внутренней емкости одного элемента.
  • Увеличенное показание самостоятельного разряда.
  • Не окончательно проработанная технология производства ионисторов.

Особенности применения

Широкую популярность ионисторы приобрели благодаря стремлению человечества найти новые и более эффективные средства для того, чтобы накапливать и сохранять энергию длительное время. Основным достоинством, определившим его распространение, стала возможность суперконденсатора за короткий период времени импульсно выделять значительную энергию от 0,1 с до 10 с.

Ионисторы нашли применение в установках и технике, где необходим быстрый и качественный запуск электрооборудования в короткий промежуток времени даже при отрицательных температурах. При этом уменьшаются максимальные токовые нагрузки и приводит к экономии средств. Не исключено и применение для запуска двигателя внутреннего сгорания.

При соединении конденсаторов в батарею возможно добиться максимальной емкости сопоставимой с аккумуляторной для питания электромобилей. Однако при этом вес источника питания будет значительно выше чем у обычных аккумуляторов. Разработчикам практически удалось решить проблему превышающего веса, для этого необходим графен однако такое возможно пока только в лабораторных условиях.

В настоящее время одним самых наиболее удачных применений ионисторов стало использование в общественном электротранспорте. В конструкции такой техники применяются устройства бесперебойного питания в которых присутствуют суперконденсаторы.

Аварийное освещение в которых установлены конденсаторы большой емкости вместо аккумуляторов имеют значительное преимущество перед системами с обычными аккумуляторами.

Интересно знать! Некоторые зарубежные производители встраивают резервные источники питания на основе ионисторов в светодиодные лампы.

Перспективы развития

Современные технологии и разработки позволяют предположить, что ионисторы в скором времени будут применяться практически во всех энергоемких производствах, космической промышленности, медицине и военной технике. Постепенно будет увеличиваться внутренняя емкость суперконденсаторов, в результате чего станет возможным заменить старые свинцово-кислотные батареи.

Также станет возможным внедрение в различные электронные устройства с регулированием и управлением. Причем станет доступным производство экологически чистых источников экономии энергии, которые значительно превышают аналоги по характеристикам. А также суперконденсаторы находят широкое применение в автомобильном транспорте, мобильных и электронных устройствах.

Полное вытеснение обычных аккумуляторов пока не происходит так как суперконденсаторы используются только в определенных областях. Однако наука не стоит на месте и постоянно развивается, в результате чего в скором времени мы сможем увидеть данные устройства в автомобильной технике, мобильных и электронных устройствах.

batteryzone.ru

Ионистор вместо аккумулятора: наглядная сборка накопителя энергии

Ионистор вместо аккумулятора — практический обзор сборки суперконденсатора


Ионистор вместо аккумулятора (он же суперконденсатор, ультраконденсатор) — в принципе это тот же конденсатор, только имеющий большую емкость, которую можно сравнить с аккумулятором. Вот именно такое устройство рассчитанное на напряжение 12v я собрал для нужд в бытовом хозяйстве. Практически такой прибор способен работать во много раз дольше, чем аккумуляторы различных типов, конечно при условии эксплуатации в определенных режимах. Вот в чем особенность применения ионистора вместо аккумулятора и его преимущество:

  • прибору не страшен полный разряд до нулевого значения;
  • в несколько сотен раз больше способен выдержать моментов заряда/разряда;
  • прибор не боится максимальных значений по току.

Но не только такие особенности имеются у ионистора использующегося вместо аккумулятора, о них я скажу после выполнения сборки накопителя.

Необходимые компоненты

  • Суперконденсаторы в количестве восьми штук с номиналом 2,7v х 500F
  • Одножильый провод сечением от 2 мм²
  • Пару винтов и гаек

  • Инструмент: паяльник, пинцет, кусачки.
  • Расходники: припой, флюс.

Ионистор вместо аккумулятора — порядок сборки батареи

В данном обзоре я буду собирать накопитель энергии с применением восьми конденсаторов, включенных по встречно-параллельной схеме. В принципе будет организованно четыре пары по две емкости включенных параллельно, а пары в свою очередь соединены последовательно.

Эмалированный провод нужно выровнять и убрать с него лак. Выполняется это с помощью рабочего ножа или специального инструмента для зачистки проводов ( у кого он имеется).

Формируем медный провод в соединительные шины

Необходимо изготовить три квадратных элемента и пару полюсов для клемм «+» и «-«

К сформированным изделиям для контактов припаиваем гайки, к которым будут подключаться провода питания.

Залуживаем места соединения квадратов.

Соединяем емкости в батарею, припаиваем проводники к выводам конденсатора, соблюдая при этом полярность.

Вначале нужно собрать четыре группы.

Теперь припаиваем шины для подключения проводов питания.

На этом этапе нужно зарядить батарею током 5А.

По истечению пяти минут накопитель будет полностью заряжен.

Делаем испытательный тест лампой накаливания.

Делаем короткое замыкание выходных контактов — провод разогрелся до красного состояния.

Испытываем батарею подключением электромотора.

Где такая конструкцию используется

Использовать можно ионистор вместо аккумулятора, там где присутствуют большие и цикличные нагрузки по току. Классический пример: накопительная емкость для сабвуфера установленного в автомобиле. Кроме этого суперконденсатор может быть задействован в устройствах где происходят постоянные циклы зарядки/разрядки, например: устройства накопления солнечной энергии с последующей ее передачей фонарям освещения в ночное время.

Здесь приведены только два примера использования ионистора вместо аккумулятора, но на самом деле их существенно больше.
Стоимость компонентов для сборки такого прибора вполне приемлема, особенно если взять во внимание колоссальный срок их эксплуатации с учетом применения по назначению.

Сборка ионистора вместо аккумулятора 12v, 100A

usilitelstabo.ru

Суперконденсатор (ионистор) заменяет резервный акумулятор

Среди последних новинок науки и техники необходимо отметить появление конденсатора нового типа – ионистор, который также называют суперконденсатор. Что же это за зверь, и можно ли его использовать в автомобильном видеорегистраторе и других электронных приборах в качестве резервного источника питания?

Может ли ионистор заменить аккумулятор?

Из школьного курса физики известно, что конденсатор может запасать энергию, накапливая заряд электричества. Вот только величина этого заряда очень мала, поэтому его хватает только на хорошую искру при коротком замыкании. Также школьники используют металлобумажные конденсаторы переменного тока на 400…1000 Вольт для того, чтобы лупить друг друга электротоком, предварительно зарядив его в розетке 220 В. А в основном конденсаторы используют как радиокомпонент в электронных приборах.

Форм-фактор ионисторов, которые используются в качестве резервных аккумуляторов

Но в конце прошлого века в секретных лабораториях был придуман новый тип конденсатора, в котором вместо металлической ленты используется электролит и другие хитрые химические вещества. Благодаря такой конструкции новый тип конденсатора при малых размерах имеет громадную емкость, которую уже можно использовать для накопления заряда, достаточного для кратковременной работы электронных устройств с малым потреблением тока. Он получил название ионистор из-за того, что функционирует благодаря ионному переносу в химической среде между электродами.

Вот такой мощный ионистор на 3000 Фарад может завести автомобиль

В наше время ионисторы используются как резервный источник питания. Например, на Алиэкспресс за 5…10 баксов можно купить 5-вольтовый ионистор, который получает полную зарядку всего за 10…100 секунд. Однако он может питать средний светодиодный фонарик в течение 20…30 минут.

Обзор китайского ионистора

Теперь разберемся, сможет ли суперконденсатор заменить аккумулятор в автомобильном видеорегистраторе? В регике нет компонентов, которые бы потребляют большой ток – сервоприводы, электродвигатели, мощные лампы освещения. Поэтому расход тока достаточно мал – 50…100 мА. Средней паршивости ионистор сможет обеспечить работу видеорегистратора в течение 3…10 минут. Это более чем достаточно, чтобы дописать до конца видеоролик и корректно завершить работу.

В этом видеорегистраторе установлен суперконденсатор на 7,5 Фарад вместо аккумулятора

Так что, если вы колеблетесь — покупать ли видеорегистратор с суперконденсатором вместо встроенного аккумулятора, то все сомнения напрасны. Этот прибор выполнит все необходимые функции в вашем автомобиле, даже если в случае ДТП будет отключена бортовая сеть. Однако регистратор такого типа нельзя будет использовать как обычную переносную видеокамеру вне салона автомобиля – для уличной видеосъемки потребуется внешний источник питания.

avto-blackbox.ru

Суперконденсатор вместо аккумулятора | Электрика в доме

Электричество играет большую роль в нашей жизни сегодня. В ближайшие несколько десятилетий наши автомобили, работающие на ископаемом топливе, и отопление дома также должны будут перейти на электроэнергию, если мы не хотим катастрофических изменений климата.

Батарея суперконденсаторов Maxwell для автомобилей

Электричество является очень универсальной формой энергии, но у нее есть один большой недостаток: ее относительно сложно хранить в нужном количестве. Аккумуляторы могут хранить большое количество энергии, но они заряжаются часами. Конденсаторы, с другой стороны, заряжаются почти мгновенно, но накапливают лишь незначительное количество энергии. В нашем будущем с электропитанием, когда нам нужно очень быстро накапливать и также быстро отдавать большое количество электроэнергии, вполне вероятно, что мы обратимся к суперконденсаторам (ультраконденсаторы), которые сочетают в себе все эти возможности.

Что такое суперкоденсаторы и как они работают

Как можно хранить электрический заряд? Обычная цинко — углеродная батарея заряжается электроэнергией на заводе и может быть использована только один раз, после чего ее можно будет только выбросить. Батареи, подобные этой, дороги в использовании и вредны для окружающей среды — миллиарды во всем мире выбрасываются каждый год.

Аккумуляторы и конденсаторы выполняют аналогичную работу — накапливают электричество — но совершенно другими способами. Батареи имеют две электрические клеммы (электроды), разделенные химическим веществом, называемым электролитом. Когда вы включаете питание, происходят химические реакции с участием, как электродов, так и электролита.

Обычная батарейка

В результате химической реакции на электродах выделяются положительные и отрицательные заряды. Когда все химические вещества истощаются, реакция прекращается, и батарея разряжается. В перезаряжаемом аккумуляторе, таком как литий-ионный блок питания, используемый в ноутбуке или MP3-плеере, реакции могут протекать в любом направлении, так что вы можете заряжать и разряжать сотни раз, прежде чем аккумулятор износится.

Обычный слюдяной конденсатор

Такой конденсатор накапливает столько же энергии, сколько батарея, но может заряжаться и разряжаться мгновенно, практически любое количество раз. В отличие от батареи положительные и отрицательные заряды в конденсаторе полностью создаются статическим электричеством; никакие химические реакции не участвуют.

Небольшой обычный конденсатор

Конденсаторы используют статическое электричество (электростатику), а не химию для хранения энергии. Внутри конденсатора находятся две проводящие металлические пластины с изоляционным материалом, называемым диэлектриком, между ними — это диэлектрический бутерброд, если так можно сказать. Зарядка конденсатора — это накопление зарядов на пластинах.

Положительные и отрицательные электрические заряды накапливаются на пластинах, которые изолируются, чтобы препятствовать их контакту, благодаря такому разделению пластин сохраняется энергия. Диэлектрик позволяет конденсатору определенного размера накапливать больше заряда при данном напряжении, поэтому можно сказать, что он делает конденсатор более эффективным в качестве устройства хранения заряда.

Конденсаторы имеют много преимуществ перед батареями: они весят меньше, обычно не содержат вредных химикатов или токсичных металлов, и их можно заряжать и разряжать миллионы раз и не изнашиваются. Но у них также есть большой недостаток: конструкция конденсаторов не позволяет им сохранять такое же количество электрической энергии как в батареях. Что можно сделать? Вообще говоря, вы можете увеличить энергию, которую накопит конденсатор, либо используя лучший материал для диэлектрика, либо используя большие металлические пластины.

Чтобы сохранить значительное количество энергии, вам нужно использовать колоссальные пластины. Например, грозовые облака — это супергигантские конденсаторы, которые накапливают огромное количество энергии — и мы все знаем, насколько они велики! А как насчет увеличения емкости конденсаторов путем улучшения диэлектрического материала между пластинами? Изучение этого варианта привело ученых к разработке суперконденсаторов в середине 20-го века.

Преимущества и недостатки аккумуляторов и конденсаторов

Батареи отлично подходят для хранения большого количества энергии в относительно небольшом пространстве, но они тяжелые, дорогие, медленно заряжаются, имеют ограниченный срок службы и часто сделаны из токсичных материалов. Обычные конденсаторы лучше почти во всех отношениях, но не так хороши в хранении большого количества энергии.

Что такое суперконденсатор? Суперконденсатор (или ультраконденсатор) отличается от обычного конденсатора в двух важных направлениях: его пластина имеет гораздо большую эффективность площадь, а расстояние между ними много меньше, потому что разделитель между ними работает по-другому принципу отличного от обычного диэлектрика. Хотя слова «суперконденсатор» и «ультраконденсатор» часто используются взаимозаменяемо, существует различие: они обычно изготавливаются из разных материалов и структурируются немного по-разному, поэтому они хранят разное количество энергии. Для целей простого понимания мы предположим, что это одно и то же.

Как обычный конденсатор, суперконденсатор имеет две разделенные пластины. Пластины изготовлены из металла, покрытого пористым веществом, таким как порошкообразный активированный уголь, который эффективно дает им большую площадь для хранения гораздо большего заряда. Представьте себе, что электричество — это вода: там, где обычный конденсатор похож на ткань, которая может вобрать небольшое количество воды, пористые пластины суперконденсатора делают больше похожими на кусочек губки, которая может впитывать воды во много раз больше. Пористые суперконденсаторные пластины — это губки впитывающие электричество.

Какой разделитель установлен между пластинами

В обычном конденсаторе пластины разделены относительно толстым диэлектриком, сделанным из чего-то вроде слюды (керамики), тонкой пластиковой пленки или даже просто воздуха (в чем-то вроде конденсатора, который действует как настраиваемый диск внутри радиоприемника). Когда конденсатор заряжается, положительные заряды образуются на одной пластине, а отрицательные — на другой, создавая электрическое поле между ними. Поле поляризует диэлектрик, поэтому его молекулы выстраиваются в направлении, противоположном полю, и уменьшают его прочность. Это означает, что пластины могут хранить больше заряда при данном напряжении. Что показано на рисунке, который вы видите ниже.

Работа обычного конденсатора

Обычные конденсаторы накапливают статическое электричество, накапливая противоположные заряды на двух металлических пластинах (синей и красной), разделенных изоляционным материалом, который называется диэлектриком (серый). Электрическое поле между пластинами поляризует молекулы (или атомы) диэлектрика, заставляя их выравниваться противоположно полю. Это уменьшает напряженность поля и позволяет конденсатору хранить больше заряда для данного напряжения.

Работа суперконденсатора

Суперконденсаторы накапливают больше энергии, чем обычные конденсаторы, создавая очень тонкий, «двойной слой» заряда между двумя пластинами, которые сделаны из пористых, обычно углеродных материалов, пропитанных электролитом. Пластины имеют большую эффективную площадь поверхности и меньшее разделение, что дает суперконденсатору способность сохранять гораздо больший заряд.

В суперконденсаторе нет диэлектрика как такового. Вместо этого обе пластины пропитаны электролитом и разделены очень тонким изолятором (который может быть сделан из углерода, бумаги или пластика). Когда пластины заряжаются, на каждой стороне сепаратора образуется противоположный заряд, создавая так называемый электрический двойной слой, толщиной всего в одну молекулу (по сравнению с диэлектриком, толщина которого может варьироваться от нескольких микрон до миллиметра или больше в обычном конденсаторе).

Вот почему суперконденсаторы часто называют двухслойными конденсаторами, также называемыми электрическими двухслойными конденсаторами (EDLC). Если вы посмотрите на нижний рисунок, то увидите, как суперконденсатор похож на два обычных конденсатора рядом.

Емкость конденсатора увеличивается с увеличением площади пластин и уменьшением расстояния между пластинами. В двух словах, суперконденсаторы получают гораздо большую емкость, благодаря комбинации пластин с большей эффективной площадью поверхности (из-за их конструкции из активированного угля) и меньшего расстояния между ними (из-за очень эффективного двойного слоя).

Первые суперконденсаторы были изготовлены в конце 1950-х годов с использованием активированного угля в качестве пластин. С тех пор достижения в области материаловедения привели к разработке гораздо более эффективных пластин, изготовленных из таких материалов, как углеродные нанотрубки (крошечные углеродные стержни, построенные с использованием нанотехнологий ), графен, аэрогель и титанат бария.

Сравнение суперконденсаторов с батареями и обычными конденсаторами

Суперконденсаторы могут использоваться в качестве прямой замены батарей. Вот беспроводная дрель с питанием от банок суперконденсаторов, также они используются в космосе (разработка НАСА). Большим преимуществом по сравнению с обычной длительной зарядкой является то, что его можно заряжать за считанные секунды, а не часы.

Базовая единица электрической емкости называется фарадом (F), названным в честь британского химика и физика Майкла Фарадея (1791–1867). Типичные конденсаторы, используемые в схемах электроники хранят только незначительное количество электричества (обычно оцениваемое в единицах, называемых микрофарадами (миллионные доли фарада), нанофарадами (миллиардные доли фарада) или пикофарадами (триллионные доли фарада).

В отличие от этого, обычный суперконденсатор может хранить заряд в тысячи, в миллионы или даже в миллиарды раз больше(оценивается в фарадах). Самые большие коммерческие суперконденсаторы, производимые такими компаниями, как Maxwell Technologies, имеют емкости, оцениваемые до нескольких тысяч фарад. Это все еще составляет лишь часть (возможно, 10–20 процентов) от электрической энергия, которую вы можете упаковать в батарею.

Но большое преимущество суперконденсатора заключается в том, что он может накапливать и высвобождать энергию практически мгновенно — гораздо быстрее, чем батарея. Это потому, что суперконденсатор работает, накапливая статические электрические заряды на твердых телах, в то время как батарея зависит от зарядов, которые производятся медленно в результате химических реакций, часто с участием жидкостей.

Обычные батареи и суперконденсаторы различаются величиной энергии и мощности. В повседневной речи эти два слова взаимозаменяемы; в науке мощность — это количество энергии, использованной или произведенной за определенное время. Батареи имеют более высокую плотность энергии (они накапливают больше энергии на единицу массы), но суперконденсаторы имеют более высокую плотность мощности (они могут выделять энергию быстрее).

Это делает суперконденсаторы особенно подходящими для относительно быстрого хранения и высвобождения большого количества энергии, но батареи по-прежнему важны для хранения большого количества энергии в течение длительных периодов времени. Хотя суперконденсаторы работают при относительно низких напряжениях (возможно, 2–3 вольт), они могут быть подключены последовательно (например в батареи) для получения больших напряжений, для использования в более мощном варианте.

Поскольку суперконденсаторы работают электростатически, а не через обратимые химические реакции, их теоретически можно заряжать и разряжать любое количество раз (технические характеристики коммерческих суперконденсаторов предполагают, что вы можете циклически повторять их, возможно, миллион раз). Они имеют небольшое внутреннее сопротивление или вообще не имеют его, что означает, что они накапливают и выделяют энергию без затрат большого количества энергии — и работают с эффективностью, близкой к 100% (обычно 97–98%).

Для чего используются суперконденсаторы

Если вам нужно хранить большое количество энергии в течение относительно короткого периода времени (от нескольких секунд до нескольких минут), у вас слишком много энергии затрачивается на хранение в конденсаторе, и у вас нет времени для зарядки аккумулятора, суперконденсатор может быть как раз то, что вам нужно.

Электрическая дрель с питанием от ультраконденсаторов

Суперконденсаторы широко используются в качестве электрических эквивалентов маховиков в машинах — «резервуаров энергии», которые сглаживают источники питания для электрического и электронного оборудования. Суперконденсаторы также могут быть подключены к батареям для регулирования мощности, которую они отдают.

Суперконденсатор от автобуса, разработанный НАСА

Суперконденсаторы используются в регенеративных тормозах, широко используются в электромобилях. Одно из распространенных применений — ветряные турбины, где очень большие суперконденсаторы помогают сгладить прерывистую мощность, создаваемую ветром. В электрических и гибридных транспортных средствах суперконденсаторы все чаще используются в качестве временных накопителей энергии для рекуперативного торможения (где энергия, которую транспортное средство обычно теряет при остановке, кратковременно накапливается и затем используется повторно, когда он снова начинает движение).

Тоже интересные статьи

electricavdome.ru

Ставим суперконденсаторы в ИБП вместо аккумулятора

Все, у кого дома имеется источник бесперебойного питания (ИБП) для компьютера, знают его один существенный недостаток, который вылетает его владельцу «в копеечку». Это конечно же недолговечность его аккумуляторов. Обычно, если повезет, они живут 3 года, а затем теряют свою емкость и функционал. Отсюда отпадает возможность использования ИБП непосредственно по назначению.

Почти во всех бесперебойниках используются закрытые, необслуживаемые кислотно-свинцовые аккумуляторы. Само слово «необслуживаемые» четко дает понять, что восстановить такую АКБ невозможно, а если и возможно, то точно ненадолго. И тут появилась идея заменить АКБ на суперконденсаторы (ионисторы). Они имеют громадный срок службы, абсолютно терпимы к высоким нагрузкам, количество циклов заряд-разряд более 10000. Поэтому, если повезет, то бесперебойник станет вечным!

Понадобится


6 суперконденсаторов с платой балансовой защиты. Купить можно готовую на АлиЭкспресс.

Плата балансовой защиты является обязательным элементом. Без нее эксплуатация ионисторов в последовательной цепи невозможна, так как все чревато выходом из строя любого элемента при перезарядке.
Емкость 1 элемента в цепи 500 Фарад и напряжение 2,7 В. То есть 6 штук составят батарею, которую можно зарядить максимум до 16,2 В.

Замена аккумуляторной батареи в источнике бесперебойного питания на суперконденсаторы


В теории как всегда все гладко, а вот на практике все не так как хотелось бы.

В данном примере использовался ИБП, который имел максимальную мощность нагрузки 300 Вт. В нем была удалена нерабочая батарея и установлена плата с суперконденсаторами вместо АКБ.
Первый запуск. И тут же первая неудача: ИБП конечно же включился, но заряжать ионисторы отказался. Почему? Дело в том, что в схеме ИБП имелась защита, которая не давала зарядку если начальное напряжение АКБ меньше 10 В.
Попытка вторая. Тогда я взял сторонний адаптер с выходным напряжение 10 В и просто зарядил конденсаторы перед включением.

Включил ИБП и все наконец-то заработало. Ионисторы продолжили заряжаться до порогового напряжения кислотной батареи.

По итогам было принято решение убрать защиту от низкого напряжения, доработав схему ИБП.
Но это ещё не все подводные камни. Далее было проверенно время работы при выключении питания сети. И результаты довольно специфические. ИБП прекращал свою работу, когда напряжение на ионисторах падало ниже 10 В

В итоге полное время работы, в зависимости от мощности нагрузки могло составлять от 5 до 30 секунд. Хотя, нагрузка, которую питал этот ИБП раньше была не совсем мощной, ее время работы было 18 секунд. В принципе, под мои задачи, этого времени вполне хватало.

Установка в корпус


На место штатной АКБ эту линейку поставить было невозможно. Решение было сделать пропил в боку корпуса и вывести элементы наружу.


В итоге внешний вид был не особо ужасен, учитывая что ИБП располагается в укромном месте.

Как оказалось, идея вполне рабочая. Конечно емкость конденсаторов нужно существенно увеличить, чтобы добиться значительного увеличения времени работы в случае отключения.
Хотя тут есть и обратная сторона медали: при увеличении общей емкости, увеличится и общее время начальной зарядки… что негативно скажется на удобстве пользования.

Смотрите видео


Полную модернизацию ИБП с корректировкой цепей защиты смотрите в видео ролике автора.

sdelaysam-svoimirukami.ru

техническое решение. Может ли ионистор заменить аккумулятор

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке — суперконденсаторты.

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них — десяти фарад!

Самодельный ионистор На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой — с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. Посл

comuedu.ru

Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *