Водород вместо нефти, газа и угля — новый тренд в Европе | Экономика в Германии и мире: новости и аналитика | DW
В Европе явно назревает водородный бум. Во всяком случае, в разных странах к нему начинают активно готовиться. В последнее время в СМИ появляется все больше сообщений о пилотных проектах с водородом — и все чаще мелькает химическое обозначение этого газа: h3.
Кто претендует на титул «водородная держава №1»
Так, в Германии сооружается крупнейшая в мире установка по его производству методом электролиза и стартует эксперимент по частичному замещению водородом природного газа в отоплении жилья. Над этим же, над заменой метана на h3 в газопроводной сети, работают и в Великобритании. В Нидерландах и Бельгии собираются протестировать речное судно на водородном топливе и создать для него систему заправки.
Себастьян Курц обещает превратить Австрию в мирового лидера в области водородных технологий
В Австрии три ведущих концерна готовят сразу несколько совместных пилотных проектов, в том числе по использованию водорода вместо угля при производстве стали, а бывший и, вероятно, будущий канцлер, консерватор Себастьян Курц в ходе избирательной кампании выдвигает лозунг превращения своей страны в «водородную державу №1». На эту же роль претендует и Франция. Да и Германия вполне сможет побороться за такой титул.
Пригородные электрички на водороде: лидирует ФРГ
Ведь два пока единственных в мире водородных поезда Coradia iLint эксплуатируются именно в Германии. Более того, они уже успешно отработали свои первые 100 тысяч километров. Это произошло в июле, спустя десять месяцев после начала регулярной перевозки пассажиров по стокилометровому маршруту между городами Бремерхафен, Куксхафен, Букстехуде и Бремерфёрде.
До конца 2021 года на этой не электрифицированной железнодорожной линии на северо-западе страны в федеральной земле Нижняя Саксония собираются полностью отказаться от дизельных локомотивов, заменив их на 14 поездов, вырабатывающих электроэнергию в топливных элементах в ходе химической реакции между водородом и кислородом. Вместо выхлопов получается вода.
Пригородная водородная электричка Coradia iLint эксплуатируется в Германии с сентября 2018 года
Такие же водородные электрички решили использовать и в федеральной земле Гессен. В мае выпускающий их французский концерн Alstom получил заказ объемом в 500 млн евро на 27 поездов, которые с 2022 года планируется использовать для пригородного сообщения с горным массивом Таунус к северо-западу от Франкфурта-на-Майне.
В результате ФРГ станет бесспорным мировым лидером в области водородного железнодорожного транспорта. Тем более, что интерес к инновационным поездам Alstom проявляют и другие федеральные земли. С некоторыми из них, сообщил глава германского филиала концерна Йорг Никутта (Jörg Nikutta) агентству dpa, он ведет сейчас «активные переговоры».
Эксперименты с водородом в газовой сети
Немцев и в целом европейцев водород привлекает, прежде всего, из экологических соображений. При использовании h3 в атмосферу не выделяется углекислый газ CO2, самый большой виновник в парниковом эффекте и глобальном потеплении, так что более широкое внедрение водородных технологий поможет странам ЕС выполнить обязательства, взятые на себя в рамках Парижского соглашения по климату (Германия, к примеру, их пока не выполняет).
Но есть и экономический интерес. Он связан с тем, что использование такого возобновляемого источника энергии, как водород, снижает потребность в ископаемых энергоносителях, чаще всего импортируемых (в том числе из России). Например, в нефти и нефтепродуктах, на которых работают, скажем, дизельные локомотивы в том же Таунусе на не электрифицированных маршрутах.
Впрочем, немецкая компания Avacon, начинающая пилотный проект по примешиванию к природному газу до 20 процентов водорода, в своих заявлениях говорит исключительно о защите климата. Эксперимент призван доказать, что к используемому для отопления газу можно добавлять не до 10 процентов h3, как предписывают действующие нормы, а в два раза больше. В результате сократится выброс CO2, поскольку будет сжигаться меньше углеводородного топлива.
Масштабы эксперимента скромные: он проводится в одном из районов городка Гентхин в восточногерманской земле Саксония-Анхальт. Выбрали это место потому, что имеющаяся здесь газовая инфраструктура по своим техническим характеристикам наиболее типична для всей сети компании Avacon. «Поскольку зеленый газ будет играть все более важную роль, мы хотим переоснастить свою газораспределительную сеть так, чтобы она была приспособлена к приему как можно более высокой доли водорода», — поясняет стратегическую цель эксперимента член правления Avacon Штефан Тенге (Stephan Tenge).
Power to Gas: возобновляемая энергия, электролиз, «зеленый водород«
Под «зеленым газом» он подразумевает «зеленый водород»: так принято называть тот h3, который образуется наряду с кислородом O2 при электролизе обычной воды. Процесс этот технически весьма простой, но очень энергоемкий. Однако если использовать для него излишки электроэнергии, вырабатываемой из возобновляемых источников — ветер и солнце, то получается безвредное для климата топливо, произведенное без выбросов в атмосферу CO2.
НПЗ Shell в Весселинге: здесь будет крупнейшая в мире установка P2G по производству водорода
Собственно, начавшееся уже несколько лет назад распространение в Европе этой технологии, получившей название Power to Gas (P2G), и лежит в основе растущего европейского интереса к водороду. Так, в конце июня британо-нидерландский концерн Shell при финансовой поддержке Евросоюза (ЕС предоставил 10 из 16 млн евро) начал в Германии на территории своего нефтеперерабатывающего завода в Весселинге под Кёльном строительство крупнейшей в мире установки по производству водорода методом электролиза. До сих пор его получают здесь из природного газа.
После ввода в эксплуатацию во второй половине 2020 года мощность установки, сообщает Shell, составит ежегодно 1300 тонн водорода, который будет использоваться главным образом в производственных процессах на самом НПЗ. Но часть пойдет на то, чтобы превратить территорию между Кёльном и Бонном в модельный регион по внедрению h3, в том числе как топлива для автобусов, грузовых и легковых автомобилей, возможно — для судов, ведь Рейн в непосредственной близости.
Будет ли Великобритания отапливаться водородом?
Тем временем в третьем по размерам британском городе Лидсе энергетическая компания Northern Gas Networks готовит пилотный проект под многозначительным названием h31, который схож с тем, что проводится в немецком Гентхине, но значительно превосходит его по масштабам. Конечная цель: во всем городе полностью перевести отопление с природного газа, метана, на водород. Морские ветропарки для его производства методом электролиза имеются.
А соответствующие нагревающие воду бойлеры вот уже три года разрабатывает в английском городе Вустере филиал немецкой фирмы Bosch Termotechnik. Его глава Карл Арнцен (Carl Arntzen) рассказал газете Die Welt, что правительство Великобритании до самого последнего времени собиралось снижать значительные выбросы CO2 путем перевода отопительных систем по всей стране с газа на электричество, однако в этом году министерство экономики очень заинтересовалось водородной идеей.
Перед Northern Gas Networks и другими британскими газовыми компаниями это открывает перспективу перепрофилировать и тем самым сохранить имеющуюся газораспределительную систему, которая в случае электрификации отопления оказалась бы ненужной.
Водородные автомобили: высоки ли их шансы?
Пока британское правительство только присматривается к водороду, лидер австрийских консерваторов Себастьян Курц идеей его широкого внедрения уже настолько увлекся, что сделал ее одним из своих предвыборных лозунгов. Его шансы выиграть в сентябре парламентские выборы и вновь возглавить правительство весьма высоки. И тогда, надо полагать, различные водородные проекты могут рассчитывать на активную поддержку Вены.
А конкретные проекты уже есть, поскольку три ведущие промышленные компании страны — энергетическая Verbund AG, нефтегазовая OMV и металлургическая Voestalpine — решили совместно форсировать внедрение в Австрии водородных технологий. Первый совместный проект стоимостью 18 млн евро (12 млн из них предоставил ЕС) будет реализован в Линце уже к концу 2019 года: там речь идет о замене угля на водород при производстве стали. А НПЗ Schwechat близ Вены планирует для собственных нужд наладить производство h3 методом электролиза — как Shell близ Кёльна.
Увлечение водородом обрело в Европе уже такие масштабы, что консалтинговая компания Boston Consulting Group (BCG) сочла нужным предупредить об опасности завышенных ожиданий и ошибочных инвестиций. Наилучшие перспективы «зеленый водород» имеет в промышленности, а также на грузовом, воздушном и водном транспорте, рассказал газете Handelsblatt Франк Клозе (Frank Klose), соавтор только что опубликованного исследования BCG.
А вот у легковых машин на водороде шансы на успех (пока, во всяком случае) представляются минимальными, хотя японская компания Toyota и собирается расширять их выпуск. На 1 января 2019 года в Германии, к примеру, было зарегистрировано всего-то 392 автомобиля, работающего на h3. У электромобилей, не говоря уже о гибридах, перспективы явно лучше.
______________
Подписывайтесь на наши каналы о России, Германии и Европе в | Twitter | Facebook | YouTube | Telegram
Смотрите также:
Технологии хранения энергии из возобновляемых источников
Электростанция из аккумуляторов
Как хранить в промышленных масштабах излишки электроэнергии, выработанной ветрогенераторами и солнечными панелями? Соединить как можно больше аккумуляторов! В Германии эту технологию с 2014 года отрабатывают в институте общества Фраунгофера в Магдебурге (фото). По соседству, в Шверине, тогда же заработала крупнейшая в Европе коммерческая аккумуляторная электростанция фирмы WEMAG мощностью 10 МВт.
Технологии хранения энергии из возобновляемых источников
Большие батареи на маленьком острове
Крупнейшие аккумуляторные электростанции действуют в США и странах Азии. А на карибском острове Синт-Эстатиус (Нидерландские Антилы) с помощью этой технологии резко снизили завоз топлива для дизельных электрогенераторов. Днем местных жителей, их около 4 тысяч, электричеством с 2016 года снабжает солнечная электростанция, а вечером и ночью — ее аккумуляторы, установленные фирмой из ФРГ.
Технологии хранения энергии из возобновляемых источников
Главное — хорошие насосы
Гидроаккумулирующие электростанции (ГАЭС) — старейшая и хорошо отработанная технология хранения электроэнергии. Когда она в избытке, электронасосы перекачивают воду из нижнего водоема в верхний. Когда она нужна, вода сбрасывается вниз и приводит в действие гидрогенератор. Однако далеко не везде можно найти подходящий водоем и нужный перепад высот. В Хердеке в Рурской области условия подходящие.
Технологии хранения энергии из возобновляемых источников
Место хранения — норвежские фьорды
Оптимальные природные условия для ГАЭС — в норвежских фьордах. Поэтому по такому кабелю с 2020 года подводная высоковольтная линия электропередачи NordLink длиной в 623 километра и мощностью в 1400 МВт будет перебрасывать излишки электроэнергии из ветропарков Северной Германии, где совершенно плоский рельеф, на скалистое побережье Норвегии. И там они будут храниться до востребования.
Технологии хранения энергии из возобновляемых источников
Электроэнергия превращается в газ
Избытки электроэнергии можно хранить в виде газа. Методом электролиза из обычной воды выделяется водород, который с помощью СО2 превращается в метан. Его закачивают в газохранилища или на месте используют для заправки автомобилей. Идея технологии Power-to-Gas родилась в 2008 году в ФРГ, сейчас здесь около 30 опытно-промышленных установок. На снимке — пилотный проект в Рапперсвиле (Швейцария).
Технологии хранения энергии из возобновляемых источников
Водород в сжиженном виде
Идея Power-to-Gas дала толчок разработкам в разных направлениях. Зачем, к примеру, превращать в метан полученный благодаря электролизу водород? Он и сам по себе отличное топливо! Но как транспортировать этот быстро воспламеняющийся газ? Ученые университета Эрлангена-Нюрнберга и фирма Hydrogenious Technologies разработали технологию его безопасной перевозки в цистернах с органической жидкостью.
Технологии хранения энергии из возобновляемых источников
В чем тут соль?
Соль тут в тех круглых резервуарах, которые установлены посреди солнечной электростанции на краю Сахары близ города Уарзазат в Марокко. Хранящаяся в них расплавленная соль выступает в роли аккумуляторной системы. Днем ее нагревают, а ночью используют накопленное тепло для производства водяного пара, подаваемого в турбину для производства электричества.
Технологии хранения энергии из возобновляемых источников
Каверна в роли подземной батарейки
На северо-западе Германии много каверн — пещер в соляных пластах. Одну из них энергетическая компания EWE и ученые университета Йены превратили в полигон для испытания технологии хранения электроэнергии в соляном растворе, обогащенном особыми полимерами, которые значительно повышают эффективность химических процессов. По сути дела, речь идет о попытке создать гигантскую подземную батарейку.
Технологии хранения энергии из возобновляемых источников
Крупнейший «кипятильник» Европы
Человечество давно уже использует тепло для производства электроэнергии. Возобновляемая энергетика поставила задачу, наоборот, превращать электричество, в том числе и избыточное, в тепло (Power-to-Heat). Строительство в Берлине крупнейшего «кипятильника» Европы мощностью 120 МВт для отопления 30 тысяч домашних хозяйств компания Vattenfall намерена завершить к концу 2019 года.
Технологии хранения энергии из возобновляемых источников
Накопители энергии на четырех колесах
Когда по дорогам мира будут бегать миллионы электромобилей с мощными аккумуляторными батареями, они превратятся в еще один крупный накопитель энергии из возобновляемых источников. Этому поспособствуют умные сети энергоснабжения (Smart grid): они будут стимулировать подзарядку по низким ценам в моменты избытка электричества. (На фото — заправка для электромобилей в Китае).
Автор: Андрей Гурков
Водород в промышленных масштабах. Новости
Технологическим центром «Энергофермы Майнц» является электролизер высокого давления с протонопроводящей мембраной (PEM), которая расположена между двумя электродами, отвечающими за отделение водорода от кислорода. РЕМ электролизер отличается высокодинамичным откликом (в течение миллисекунд) и может быстро справляться как с увеличенной в полтора раза нагрузкой, так и с перепадами напряжения.
На полную мощность в 6 МВт установка выходит в считаные секунды, поэтому способна быстро восполнить недостаток энергии в системе в случае снижения объемов выработки возобновляемыми источниками. При этом основным источником электроэнергии для завода в Майнце являются расположенные поблизости ветряные фермы. Таким образом, поддерживается идеальный баланс энергосистемы, при котором неравномерность генерации компенсируется подключением резервных мощностей завода.
Через сотрудничество – к инновациям
Процесс разработки и промышленного внедрения технологии длился 2 года. Наряду с «Сименс» в нем также принимали участие Университет Рейн-Майн, компания Linde и муниципальные учреждения Майнца (Германия).
Компания «Сименс» осуществляла поставку базового элемента системы – установки для электролиза. В ее оснащении использовались контроллеры Simatic, отвечающие за автоматизацию технологических процессов. Также «Сименс» предоставила станции среднего напряжения с трансформаторами GEAFOL, питающими энергоблоки низкого и высокого напряжения конвертеров Sinamic, и распределительные устройства среднего напряжения (20 кВ) с газовой изоляцией. Система управления всей энергофермой также выполнена на основе оборудования Simatic.
За обслуживание оборудования отвечает компания Linde. Она также производит очистку, сжатие, хранение и закачку водорода в хранилище.
В функции университета Рейн-Майн входит обеспечение общего научного контроля проекта. В частности, его сотрудники проводят анализ взаимодействия всех компонентов: электролитической установки и компрессора, энергосети и системы передачи газа, и т.д.
Совершенный энергоресурс
Водород – универсальный источник энергии. Его можно снова использовать для получения электричества, им можно заправлять работающие на водороде автомобили или превращать в метан путем соединения с углекислым газом. Метан, являющийся основным компонентом природного газа, можно хранить в уже существующей инфраструктуре для природного газа и использовать в отопительных системах или в качестве топлива для некоторых видов транспорта.
Пока водород производят, в основном, путем расщепления метана. Технология на основе электролиза воды, применяемая на заводе в Майнце, является превосходной альтернативой этому процессу, поскольку предполагает использование возобновляемых источников энергии и сопоставима по производственным затратам.
Как получают водород в промышленности: способы выделения
Водород считается одним из наиболее ценных видов сырья для синтеза аммиака и производства полимеров и нефтехимии. Он используется для получения твердых жиров из масел растительного происхождения. Из-за высокой химической активности вещество в чистом виде практически не встречается в природе. Основные источники для получения водорода в промышленности — метан, содержащийся в природном газе, и вода. Специалисты отмечают также перспективность разделения попутных газов коксового производства, которые на большинстве предприятий сжигаются.
Способы выделения водорода из соединений
Самые распространенные способы получения водорода в промышленности:
- паровая конверсия метана и его гомологов;
- газификация кокса;
- электролитическое разложение воды.
Особенности работы оборудования для получения водорода
Метановый конвертор
Оборудование для получения водорода в промышленности методом паровой конверсии имеет сложную конструкцию и компоновку. В его состав входят парогенератор, компрессорная станция, подогревающая установка, конверторы метана и угарного газа. Система подключена к подающей магистрали и потребителям. Извлечение водорода происходит при температуре до 1000° C под избыточным давлением и в присутствии катализатора. Перед этим сырье подогревается, очищается от серосодержащих примесей и перемешивается с водяным паром.
Восстановление водорода происходит в два этапа.
- После первой ступени конверсии продукт содержит до 10% метана, для разложения которого в смесь вводят атмосферный воздух.
- В конце процесса водород очищают от кислорода и оксидов углерода, а избыточное тепло направляют в котел-утилизатор для производства водяного пара.
Процесс полностью замкнут и энергетически независим, но требует применения сложных схем контроля. Несмотря на недостатки, большую часть водорода в промышленности получают как раз этим способом.
Установка газификации кокса
Технология заключается в пропускании перегретого водяного пара через слой кокса, каменного или бурого углей при температуре свыше 1000° C без доступа кислорода.Полученная смесь водорода и окиси углерода обрабатывается водяным паром. Один из наиболее перспективных способов применения продуктов газификации угля — сжигание на тепловых электростанциях, поскольку современные установки отчаются высокой производительностью, сравнительно низкой себестоимостью конечного продукта и способны работать в непрерывном режиме.
Электролизеры
При помощи электролитических установок водород получают как в промышленности, так и для коммерческого использования. На рынке присутствует оборудование разной производительности, а сырьем служит обычная вода. Установка представляет собой сосуд с раствором щелочи или средней соли, в который погружены два электрода. При пропускании постоянного тока на катоде выделяется водород. Вторичный продукт реакции — кислород — также используется для решения технологических задач. Доочистка позволяет получить на выходе технически и химически чистый водород. Электролизер с вспомогательным оборудованием для водоподготовки и осушения размещается на небольшой площади. Многие производители предлагают мобильные моноблочные и контейнерные установки.
Среди всех способов получения водорода в промышленности электролитический считается наиболее экологичным. Единственный его условный недостаток — зависимость от качества сети питания.
Найден способ получать водород из воды без затрат электроэнергии
Водородное топливо — отличная альтернатива углеводородному: при сжигании чистого водорода образуется только энергия и вода, и никаких вредных продуктов. Но быстро перейти на водородное топливо мешают сложности с его получением. В отличие от углеводородов, щедро разбросанных под землёй по всей планете, водород нельзя извлекать из недр: в чистом виде его нет нигде на планете. Получают его либо из углеводородов, либо из воды.
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Получение водорода из углеводородов — это в основном конверсия метана, то есть очищенного природного газа. Получается, что для производства «чистого» топлива нужно запустить не самый экологичный технологический процесс, в качестве побочного продукта дающий крайне вредный угарный газ.
Выделение водорода из воды — более экологичный процесс, но для него нужна электроэнергия, большую часть которой во всём мире по-прежнему получают, сжигая уголь, нефть и природный газ и выбрасывая в атмосферу множество загрязнителей.
Исследователи из Королевского мельбурнского исследовательского университета (Австралия), Массачусетского технологического института и Кембриджа нашли способ получать водород из воды без затрат электроэнергии. Реакция отщепления водорода от кислорода в молекуле воды запускается под действием солнечного света в присутствии фотокатализатора.
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
В качестве фотокатализатора учёные использовали сульфид молибдена — аморфную субстанцию с общей формулой MoSx, отлично впитывающую водяной пар из воздуха, а на солнце запускающую процесс разложения воды с образованием свободного водорода. Добавив к сульфиду молибдена порошок наночастиц диоксида титана, учёные получили род чернил, которые легко наносятся на любые поверхности — например, на стекло и пластик, — и образуют прочную плёнку. Покрыв такой плёнкой любую открытую солнечным лучам поверхность, можно получать водород из насыщенного влагой воздуха где угодно, утверждают авторы исследования.
Исследование опубликовано в журнале ACS Nano.
Новый способ расщепления воды сделает производство водорода «зеленым»
Австралийские ученые разработали более дешевый и эффективный способ получения водорода из воды с использованием железных и никелевых катализаторов, вместо редкоземельных элементов, вроде рутения, платины и иридия, которые по стоимости обходятся в сотни раз дороже.
Развивающаяся концепция «водородной экономики» предполагает, что в скором времени сжатый водород станет таким же распространенным источником энергии, как бензин, а автомобили на топливных элементах будут встречаться не реже, чем электромобили на батареях и машины с двигателями внутреннего сгорания.
Недавно мы писали о первом танкере для транспортировки сжиженного водорода, который был запущен в Японии. Он предназначен для перевозки газа из Австралии, где его получают совсем не «чистым» способом: сжиганием бурого угля, 160 тонн которого дает всего 3 тонны водорода и 100 тонн выбросов С02.
В перспективе десятилетий рынок водорода как источника «чистой энергии» оценивается в триллионы долларов, и особенно это направление набирает обороты в Японии и Корее. Но его большие деньги становятся уже не такими привлекательными, когда речь заходит о технологиях, не причиняющих вреда окружающей среде.
Читайте также: И хранить, и генерировать энергию для зданий сможет гибридная батарея на основе «реверсивных» топливных элементов
Экологически безопасный способ получения водорода состоит в том, чтобы отделить его от воды с помощью электролиза. Пара электродов помещается в емкость с жидкостью и включается питание. Кислород притягивается к аноду, водород – к катоду, и если при этом электричество, которое участвует в процессе, генерируется возобновляемыми источниками, то на выходе можно получить так называемый «зеленый» водород.
Сегодня проблема промышленного производства водорода заключается в том, что расщепление воды является дорогостоящим и малоэффективным процессом. По этой причине такой вид топлива пока не может конкурировать с бензином. Новая разработка австралийских университетов UNSW, Griffith и Swinburne обещает совершить прорыв в этой области.
В документе, опубликованном в Nature Communications, команда ученых заявила, что им удалось заменить дорогую платину на углеродный катализатор.
«Мы покрываем электроды нашим катализатором, чтобы уменьшить потребление энергии, — уточнил профессор Школы химии UNSW Чуан Чжао. — На этом катализаторе имеется крошечный наноразмерный участок, где железо и никель взаимодействуют на атомном уровне. Именно здесь водород может быть отделен от кислорода, который выделяется в виде экологически чистых отходов».
Исследователи говорят, что наноуровень взаимодействия фундаментально меняет свойства материалов. Таким образом, никель-железный катализатор может быть таким же эффективным, как и платиновый. А дополнительным его преимуществом является возможность применения для катализа как водорода, так и кислорода, что значительно снижает производственные расходы.
Пока неясно, как скоро получится внедрить новую разработку в промышленность и насколько она повлияет на стоимость крупномасштабного производства водорода, но Чжао настроен оптимистично:
«Мы десятилетия говорили об эре водородной экономики, но сейчас эти разговоры могут стать реальностью».
Источник: unsw.edu.au
А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!
Понравилась статья? Поделитесь ею и будет вам счастье!
Сауле Жолдаякова, инженер-эколог: «Выбросы от обычной ТЭЦ в 20 раз больше, чем от водорода»
Опыт научной деятельности
В Японии есть такая система, когда университет, исследовательский центр и промышленный сектор связаны между собой. На мой взгляд, этот опыт был бы полезен и Казахстану, ведь у нас обычно промышленность и университеты сами по себе. А про отечественные исследовательские центры я практически ничего не знаю. Допустим, обучаясь в университете, я начинаю работу над выбранной для себя темой. Далее могу продолжить её в исследовательском центре, но уже более масштабно. Потом можно попробовать внедрить это в промышленность. Естественно, те же студенты потом могут туда устроиться на работу. Мне тоже выпал шанс поработать в таких компаниях как Toshiba, Panasonic, Hitachi. Есть различные исследовательские центры, где воочию можно увидеть работу местных ученых, увидеть свои результаты. Это очень мотивирует. В Японии системы в государственных и частных университетах разные. В государственных университетах есть хорошая поддержка от государства. Они хорошо спонсируются, и у них исследовательская деятельность работает как конвейер. Студент, зайдя в лабораторию и занимаясь каким-то исследованием, становится частицей одного большого университетского исследования.
Мне тяжело судить о науке и научной деятельности в Казахстане. В 2017 году я специально приехала в столицу на «Экспо», чтобы выступить на конференции всемирных учёных и инженеров. Ради этого я отказалась от предложения поехать в Штаты. Поддержав мой энтузиазм, университет оплатил мое участие на конференции, мои преподаватели надеялись, что мое выступление будет интересным, прежде всего, моей стране. Но, увы, непосредственно в день конференции я узнала, что меня нет среди спикеров. Оказалось, что время моего выступления «передали» ректору одного из университетов. «Вы же понимаете, он профессор, а вы — просто студент», — сказали мне тогда организаторы. Было обидно, но больше всего расстроились мои преподаватели, они даже написали письмо организаторам от имени университета. Однако, насколько я знаю, ответа от них так и не получили. После этого мне все говорили: «Ты точно хочешь заниматься наукой в Казахстане?».
Тем не менее, я не перестаю надеяться, что, вернувшись на Родину, смогу работать по специальности.
Наука в Казахстане. Пациент жив или мёртв?
Я читаю статьи некоторых казахстанских учёных и вижу, как они стараются. Я очень уважаю их, но здесь проблема, наверное, не только в том, жив пациент или мертв. Здесь проблема в самой больнице и в методах лечения врача. Потому что страдают пациенты из соседних палат. Например, образование.
Данная публикация стала возможной благодаря помощи американского народа, оказанной через Агентство США по международному развитию (USAID) в период с 05.03.2021 по 04.07.2021, и был подготовлен в рамках «Центральноазиатской программы MediaCAMP», реализуемой Internews при финансовой поддержке USAID. Проект «Gylym Faces» несёт ответственность за её содержание, которое не обязательно отражает позицию USAID, Правительства США или Internews.
Водородная бомба Мир нашел новую альтернативу нефти и газу. Она обойдется в сотни миллиардов долларов: Госэкономика: Экономика: Lenta.ru
Бум на зеленую энергетику уже давно сопровождается попытками найти замену привычным, но совершенно не экологичным углеводородам. Одним из кандидатов на эту роль стал водород. На него делают ставку Европейский союз, Китай, США, Япония и многие другие страны. Суммарная стоимость всех проектов, реализуемых сегодня в области водородной энергетики, достигла уже 90 миллиардов долларов. Объем планируемых инвестиций в последующие 30 лет только лишь от ЕС — до 470 миллиардов евро. В то же время на пути водородной революции пока немало препятствий — в частности, дороговизна производства, нехватка чистой воды и неразвитость систем доставки. Перспективы h3 как главного топлива будущего — в материале «Ленты.ру».
Главная проблема любого ископаемого источника энергии — ограниченность его объемов. Рано или поздно закончатся и нефть, и газ, и уголь. Существующие возобновляемые источники энергии — ветер, солнце и вода — пока не могут в достаточной степени заменить углеводороды. А вот водород в теории может. Водород практически не встречается на Земле в чистом виде, однако его можно извлечь из большого числа распространенных ресурсов: воды, метана, каменного угля, биомассы, водорослей и даже мусора.
Водород научились получать еще в начале XIX века, но до конца XX века повсеместно использовать водород в качестве устойчивого источника энергии было невозможно. Газогенераторные установки были массивными и требовали топлива для работы. Вторая проблема — такой водород нельзя назвать чистым, так как газогенераторы оставляют углеродный след.
Фото: Public Domain / Wikimedia
Важный шаг к превращению водорода в распространенный источник энергии произошел в 1959 году — американская компания Allis-Chalmers Manufacturing Company создала трактор с силовой установкой, работавшей на так называемых топливных элементах. Принцип работы такой установки прост: запасенный в баллонах водород вступает в химическую реакцию с кислородом, в результате чего выделяется электричество, которое питает электромотор. Помимо этого топливные элементы выделяют в атмосферу побочные продукты, безвредные для окружающей среды, — тепло и водяной пар.
Топливные элементы можно использовать для получения электроэнергии в промышленных масштабах, а выделяемое в процессе реакции тепло — для обогрева зданий. Кроме того, они гораздо компактнее газогенераторной установки, поэтому их можно установить на борту любых транспортных средств. Теоретически топливные элементы могут сделать водород основой топливно-энергетического комплекса (ТЭК), но для этого нужно решить две проблемы.
Фото: Kim Hong-Ji / Reuters
Первая — углеродный след при получении водорода. Топливные элементы обеспечивают нулевой выброс лишь в процессе получения электричества, но для их работы нужен водород. Эту проблему можно решить с помощью электролиза воды: под воздействием электрического тока дистиллированная вода распадается на кислород и водород. Процесс вообще может быть замкнутым: полученное в топливных элементах электричество используется в том числе для получения водорода.
При этом водород, полученный путем электролиза, еще и подразделяют на «желтый» и «зеленый»: для производства первого используется атомная энергия, второго — возобновляемые источники энергии. Таким образом, по-настоящему экологичным водородом многие страны признают лишь «зеленый» подвид.
Второе серьезное препятствие на пути повсеместного внедрения топливных элементов — их высокая цена. На рубеже XX и XXI веков свои автомобили на топливных элементах показали BMW, General Motors, Honda, Hyundai, Toyota и даже «АвтоВАЗ», но о серийном производстве речи еще не шло. В 2008 году Honda выпустила небольшую партию седанов FCX Clarity с водородными топливными элементами, которую сдавали в лизинг (одновременно и аренда, и аналог целевого кредита) в Калифорнии за 600 долларов в месяц. При этом производство каждого автомобиля обходилось Honda в миллион долларов.
Материалы по теме
00:02 — 30 сентября 2020
На обочине
Конкурента Tesla обвинили в грандиозной лжи. Слава и миллиарды соперника Илона Маска тают на глазах
00:02 — 13 января
Опомнились
Запад решил отказаться от нефти и газа и уже нашел им замену. Готова ли к этому Россия?
В 2014 году Toyota начала продажи Mirai — первого в мире серийного автомобиля на водородных топливных элементах. Два года спустя в продажу поступило второе поколение Honda FCX Clarity, но объемы продаж оставались скромными. Toyota за все время производства реализовала около десяти тысяч Mirai.
Параллельно топливные элементы начали использовать и в других видах транспорта. В 2017 году в Германии на маршрут вышел пассажирский поезд на водородных топливных элементах Coradia iLint. Причем работает он на линиях, которые не электрифицированы, — поезд на топливных элементах заменил дизельные тепловозы. С 2008 года по Альстеру, притоку Эльбы, ходят суда на водородных топливных элементах. Существуют и прототипы самолетов с аналогичными силовыми установками.
Однако и Toyota, и другие производители уверены, что в ближайшем будущем себестоимость автомобилей на топливных элементах будет не выше, чем у машин с двигателем внутреннего сгорания (ДВС). В 2020 году японский автогигант представил второе поколение модели и планирует увеличить продажи в десять раз.
Сразу несколько игроков включились в борьбу за рынок тяжелых грузовиков на топливных элементах. Hyundai в рамках программы Hydrogen Mobility к 2025 году планирует поставить клиентам в Европе 1600 грузовиков на топливных элементах. Toyota совместно с Kenworth начала испытания водородного грузовика еще в 2017 году, а два года спустя поставила несколько машин в порт Лос-Анджелеса. Наконец, одним из главных генераторов новостей стал американский стартап Nikola, который занимается разработкой грузовиков на топливных элементах. Компания обещала начать их производство к 2023 году.
Исследовательский центр Bloomberg New Energy Finance (BNEF) оценивает все реализуемые сегодня проекты в области водородной энергетики в сумму свыше 90 миллиардов долларов. Институт экономики энергетического сектора и финансового анализа (IEEFA), в свою очередь, насчитал десятки строящихся установок электролиза на базе ВИЭ суммарной мощностью 50 ГВт и стоимостью 75 миллиардов долларов.
Главным инициатором отказа от ископаемых источников энергии и перехода на водород выступают страны Большой семерки, которые в 2015 году, еще до подписания Парижского соглашения, договорились полностью избавиться от ископаемого топлива к концу века. Европейский союз еще более оптимистичен: в 2019 году был принят «Зеленый пакт для Европы» (The European Green Deal), согласно которому ЕС должен добиться нулевого выброса парниковых газов и отказа от ископаемых источников энергии уже к 2050 году. Особую роль в его реализации должен сыграть водород.
Фото: Bernd von Jutrczenka / Getty Images
В июле 2020 года Еврокомиссия представила «Водородную стратегию для климатически нейтральной Европы». Она предусматривает конкретные шаги по развитию водородной энергетики. Приоритетным направлением станет именно «зеленый» водород. Но на первом этапе, чтобы быстрее уменьшить выбросы парниковых газов, будет использоваться и низкоуглеродистый водород — произведенный на основе ископаемого топлива, например, каменного угля, но с улавливанием углерода.
К 2030 году, согласно стратегии, на территории Евросоюза будут работать электролизеры суммарной мощностью 40 ГВт для производства «зеленого» водорода, а еще 40 ГВт будут производить электролизеры в соседних странах для экспорта водорода в ЕС. Для сравнения: общая мощность всех электростанций России составляет около 250 ГВт. Производство же самого «зеленого» водорода достигнет 10 миллионов тонн. По оценкам ЕК, к 2050 году возобновляемый водород в Европе может потребовать от 180 до 470 миллиардов евро инвестиций. Пока же на энергию на базе водорода приходится менее 1 процента всего энергопотребления в Евросоюзе.
Не менее амбициозные планы у Китая: в стране надеются, что к 2040 году водород будет составлять 10 процентов всей китайской энергосистемы. На протяжении долгих лет КНР была мировым лидером по производству водорода и занимала около одной трети мирового рынка. Но речь идет о высокоуглеродистом водороде, который получают из угля и нефти без улавливания углерода. Это приводит к тому, что цена килограмма водорода в Китае одна из самых низких в мире — около 9 юаней (1,15 евро).
Для сравнения: ориентировочная стоимость ископаемого водорода в ЕС сегодня составляет около 1,5 евро за килограмм. Предполагаемые затраты на ископаемый водород с улавливанием и хранением углерода составляют около 2 евро за килограмм. А килограмм «зеленого» водорода, в свою очередь, обойдется в 2,5-5,5 евро.
Однако обязательство стать климатически нейтральным к середине века заставляет Китай переориентироваться на производство экологически чистого водорода. К тому же, по расчетам Института Роки-Маунтин (RMI), американской некоммерческой организации, консультирующей по вопросам энергетического перехода, Китай может стать углеродно-нейтральным к середине века без ущерба для экономического роста. Институт утверждал, что «Китай имеет хорошие возможности для получения технологического конкурентного преимущества от перехода к чистым нулевым выбросам», и призвал страну поддержать электролиз водорода.
Электролизер
Кадр: Realstrannik.com
Соседи — Южная Корея и Япония — также намерены развивать водородную индустрию. Первая планирует наладить производство топливных ячеек общей мощностью 40 ГВт, а также выпустить более 6 миллионов водородных автомобилей к 2040 году. Вторая уже построила «зеленую» водородную фабрику в Фукусиме, одну из крупнейших в мире. А Саудовская Аравия при технологической поддержке американской компании Air Products строит в своем «городе будущего» Неоме гигантскую зеленую электролизную установку стоимостью 5 миллиардов долларов и производительностью 650 тонн водорода в сутки.
Вероятно, крупнейший водородный проект современности реализуется в настоящее время в Австралии. В «Азиатском хабе возобновляемой энергии» в горнопромышленном центре Пилбара строятся солнечные и ветровые электростанции общей площадью 6,5 тысячи квадратных километров. Они будут производить более 50 тераватт-часов зеленой энергии, большая часть которой пойдет на производство водорода. Проект стоимостью 16 миллиардов долларов планируется запустить в 2027 году.
Что касается России, то возрастающая роль водорода в мировой энергетике на первый взгляд сулит ей потерю доли на рынке. В действительности же есть шанс не только сохранить, но и упрочить свои позиции. Министр энергетики Александр Новак заявил, что Россия уже договаривается с Германией о совместных исследованиях по производству зеленой энергии — в частности, водорода. Новак подчеркнул, что, на его взгляд, углеводороды продолжат играть ключевую роль в мировой энергетике, а вот энергетический баланс в Европе может измениться.
Действительно, «водородная стратегия» ЕС подразумевает импорт огромных объемов водорода, а у России уже есть каналы его поставки. Например, для импорта водорода в Германию можно использовать существующую сеть газопроводов — в частности, газопроводы OPAL и Eugal, сухопутные продолжения «Северного потока» и «Северного потока 2». Gascade, немецкая дочка «Газпрома», на словах подтвердила принципиальную готовность использовать свои газопроводы для транспортировки водорода.
Александр Новак
Фото: Александр Миридонов / «Коммерсантъ»
Таким образом, у России уже есть покупатель водорода и возможности по его транспортировке. Однако мощностей по производству водорода, тем более экологически чистого, в стране нет. Решить эту проблему должна дорожная карта «Развитие водородной энергетики в России» на 2020-2024 годы. Главную роль в ее реализации должны сыграть «Росатом» и «Газпром». Уже в 2024 году «Росатом» должен запустить пилотные водородные установки на атомных станциях и построить опытный полигон для испытаний водородных поездов. «Газпром», в свою очередь, должен в 2021 году разработать и испытать газовую турбину на метано-водородном топливе, а затем изучать возможности применения водорода в двигателях различных транспортных средств и в газовых установках — газотурбинных двигателях и газовых бойлерах.
Интерес к теме водорода проявляет и «НОВАТЭК». Компания объявила о подписании меморандума о взаимопонимании в целях изучения и оценки возможностей развития производственно-сбытовой цепочки поставок водорода с немецкой компанией Uniper. Компании рассматривают возможность поставки «голубого» водорода, произведенного из природного газа с дальнейшим улавливанием и хранением CO2, а также «зеленого» водорода.
По оценкам BofA Securities, к 2050 году стоимость мирового рынка «зеленого» водорода составит 2,5 триллиона долларов. Кроме того, будет создано не менее 30 миллионов рабочих мест. Однако не все разделяют столь оптимистичные прогнозы. Аналитики из Rystad Energy считают, что до водородного триумфа в энергетике еще далеко — лишь половина из запущенных в мире «зеленых» водородных проектов будет реализована до 2035 года. При этом подавляющему большинству проектов потребуется господдержка.
Помимо того, что чистая водородная энергетика требует огромных капиталовложений, существует проблема, связанная с недостатком ключевого сырья — чистой воды. По оценкам экспертов Oilprice, для производства одной тонны водорода методом электролиза нужно девять тонн воды. При этом она требует специальной подготовки и очистки. Например, чтобы подготовить одну тонну деминерализованной воды, пригодной для электролиза, нужно две тонны обычной воды. Таким образом, понадобится 18 тонн воды, чтобы произвести тонну водорода.
Фото: Spencer Platt / Getty Images
Также непонятно, как быть с транспортировкой водорода. Сейчас основные объемы этого топлива перевозятся морскими танкерами, но проблема заключается в выкипании продукта, даже несмотря на использование систем охлаждения. Существенно дешевле доставлять водород по трубам, однако запускать водород в действующие газотранспортные системы можно, только смешав его с природным газом, что означает дополнительные затраты на извлечение.
Еврокомиссия признает, что «чистый» и низкоуглеродный водород еще долго будет значительно дороже водорода, полученного из ископаемых источников энергии. Из хороших новостей: за последние пять лет стоимость технологии электролиза упала на 40 процентов и продолжает снижаться. BloombergNEF прогнозирует, что к 2050 году «зеленый» водород при цене доллар за килограмм станет выгоднее газа на мировых рынках и сможет конкурировать с самым дешевым углем. Но это через 30 лет, а пока путь превращения водорода в главный энергоноситель планеты только начинается.
Центр данных по альтернативным видам топлива: производство и распределение водорода
Несмотря на то, что водород присутствует в большом количестве на Земле как элемент, он почти всегда присутствует в составе другого соединения, такого как вода (H 2 O) или метан (CH 4 ), и должен быть разделен на чистый водород (H 2 ) для использования в электромобилях на топливных элементах. Водородное топливо соединяется с кислородом воздуха через топливный элемент, создавая электричество и воду в результате электрохимического процесса.
Производство
Водород можно производить из различных внутренних ресурсов, включая ископаемое топливо, биомассу и электролиз воды с помощью электричества. Воздействие водорода на окружающую среду и энергоэффективность зависят от того, как он производится. Реализуется несколько проектов по снижению затрат, связанных с производством водорода.
Есть несколько способов производства водорода:
Риформинг / газификация природного газа: Синтез-газ, смесь водорода, окиси углерода и небольшого количества двуокиси углерода, образуется в результате реакции природного газа с высокотемпературным паром.Окись углерода реагирует с водой с образованием дополнительного водорода. Этот метод самый дешевый, эффективный и самый распространенный. На конверсию природного газа с использованием пара приходится большая часть водорода, ежегодно производимого в Соединенных Штатах.
Синтез-газ также может быть создан путем реакции угля или биомассы с высокотемпературным паром и кислородом в газификаторе под давлением, который преобразуется в газообразные компоненты — процесс, называемый газификация . Полученный синтез-газ содержит водород и монооксид углерода, который реагирует с водяным паром для отделения водорода.
Электролиз: Электрический ток расщепляет воду на водород и кислород. Если электричество производится из возобновляемых источников, таких как солнце или ветер, образующийся водород также будет считаться возобновляемым и имеет множество преимуществ по выбросам. Набирают обороты проекты по производству водорода, когда избыточная возобновляемая электроэнергия, если таковая имеется, используется для производства водорода посредством электролиза.
Возобновляемый жидкий риформинг: Возобновляемое жидкое топливо, такое как этанол, реагирует с высокотемпературным паром с образованием водорода вблизи точки конечного использования.
Ферментация: Биомасса превращается в сырье, богатое сахаром, которое можно ферментировать для получения водорода.
Ряд методов производства водорода находятся в стадии разработки:
Основными производителями водорода являются Калифорния, Луизиана и Техас. Сегодня почти весь водород, производимый в Соединенных Штатах, используется для очистки нефти, обработки металлов, производства удобрений и обработки пищевых продуктов.
Основной задачей производства водорода является снижение стоимости технологий производства, чтобы сделать получаемый водород конкурентоспособным по стоимости по сравнению с обычным транспортным топливом.Государственные и отраслевые научно-исследовательские и опытно-конструкторские проекты снижают стоимость, а также воздействие на окружающую среду технологий производства водорода. Узнайте больше о производстве водорода в Управлении технологий производства водорода и топливных элементов.
Распределение
Большая часть водорода, используемого в Соединенных Штатах, производится там или поблизости от того места, где он используется, обычно на крупных промышленных предприятиях. Инфраструктура, необходимая для распределения водорода по общенациональной сети заправочных станций, необходимых для повсеместного использования электромобилей на топливных элементах, все еще нуждается в развитии.Первоначальное развертывание транспортных средств и станций сосредоточено на построении этих распределительных сетей, в первую очередь в южной и северной Калифорнии.
В настоящее время водород распределяется тремя способами:
Трубопровод: Этот наименее дорогой способ доставки больших объемов водорода ограничен, поскольку в настоящее время доступно только около 1600 миль трубопроводов США для доставки водорода. Эти трубопроводы расположены недалеко от крупных нефтеперерабатывающих и химических заводов в Иллинойсе, Калифорнии и на побережье Мексиканского залива.
Трубные прицепы высокого давления: Транспортировка сжатого водородного газа грузовиком, железнодорожным вагоном, кораблем или баржей в трубчатых прицепах высокого давления является дорогостоящей и используется в основном на расстояния до 200 миль или меньше.
Цистерны для сжиженного водорода: Криогенное сжижение — это процесс, при котором водород охлаждается до температуры, при которой он становится жидкостью. Хотя процесс сжижения является дорогостоящим, он позволяет транспортировать водород более эффективно (по сравнению с использованием трубных прицепов высокого давления) на большие расстояния грузовиком, железнодорожным вагоном, кораблем или баржей.Если сжиженный водород не используется с достаточно высокой скоростью в точке потребления, он выкипает (или испаряется) из резервуаров для хранения. В результате необходимо тщательно согласовывать скорость доставки и потребления водорода.
Создание инфраструктуры для распределения и доставки водорода на тысячи будущих заправочных станций представляет собой множество проблем. Поскольку водород содержит меньше энергии на единицу объема, чем все другие виды топлива, его транспортировка, хранение и доставка к месту конечного использования обходятся дороже в пересчете на галлон бензина (на GGE).Строительство новой сети водородных трубопроводов связано с высокими начальными капитальными затратами, а свойства водорода создают уникальные проблемы для материалов трубопроводов и конструкции компрессора. Однако, поскольку водород можно производить из самых разных ресурсов, региональное или даже местное производство водорода может максимально использовать местные ресурсы и минимизировать проблемы с распределением.
Необходимо учитывать компромисс между централизованным и распределенным производством. Централизованное производство водорода на крупных заводах снижает производственные затраты, но увеличивает затраты на сбыт.Производство водорода в точке конечного использования — например, на заправочных станциях — снижает затраты на сбыт, но увеличивает производственные затраты из-за затрат на создание производственных мощностей на месте.
Государственные и промышленные научно-исследовательские проекты преодолевают препятствия на пути к эффективному распределению водорода. Узнайте больше о распределении водорода в офисе технологий водорода и топливных элементов.
процессов производства водорода | Министерство энергетики
Водород можно производить с помощью ряда различных процессов.Термохимические процессы используют тепло и химические реакции для выделения водорода из органических материалов, таких как ископаемое топливо и биомасса, или из таких материалов, как вода. Вода (H 2 O) также может быть разделена на водород (H 2 ) и кислород (O 2 ) с помощью электролиза или солнечной энергии. Микроорганизмы, такие как бактерии и водоросли, могут производить водород посредством биологических процессов.
Термохимические процессы
Некоторые термические процессы используют энергию различных ресурсов, таких как природный газ, уголь или биомасса, для выделения водорода из их молекулярной структуры.В других процессах тепло в сочетании с замкнутыми химическими циклами производит водород из такого сырья, как вода. Узнайте больше о следующих термохимических процессах:
Электролитические процессы
Электролизеры используют электричество для разделения воды на водород и кислород. Эта технология хорошо разработана и доступна на рынке, и в настоящее время разрабатываются системы, которые могут эффективно использовать прерывистую возобновляемую энергию. Узнайте больше об электролизе.
Процессы прямого солнечного водоразделения
Процессы прямого солнечного расщепления воды или фотолитические процессы используют световую энергию для расщепления воды на водород и кислород.Эти процессы в настоящее время находятся на различных ранних стадиях исследований, но предлагают долгосрочный потенциал для устойчивого производства водорода с низким воздействием на окружающую среду. Узнайте больше о следующих процессах разделения воды на солнечной энергии:
Биологические процессы
Микробы, такие как бактерии и микроводоросли, могут производить водород посредством биологических реакций с использованием солнечного света или органических веществ. Эти технологические пути находятся на стадии исследований и разработок, где проводятся пилотные демонстрации, но в долгосрочной перспективе имеют потенциал для устойчивого производства водорода с низким содержанием углерода.Узнайте больше о следующих биологических процессах:
Производство водорода: термохимическое расщепление воды
При термохимическом расщеплении воды используются высокие температуры — от концентрированной солнечной энергии или отходящего тепла ядерных энергетических реакций — и химических реакций для производства водорода и кислорода из воды. Это долгосрочный технологический путь с потенциально низкими выбросами парниковых газов или их отсутствием.
Как это работает?
В процессах термохимического расщепления воды используется высокотемпературное тепло (500–2000 ° C) для запуска ряда химических реакций, в результате которых образуется водород.Химические вещества, используемые в процессе, повторно используются в каждом цикле, создавая замкнутый цикл, который потребляет только воду и производит водород и кислород. Необходимые высокие температуры могут быть созданы следующими способами:
- Концентрация солнечного света на башне реактора с использованием поля зеркальных «гелиостатов», как показано на рисунке 1. Для получения дополнительной информации см. Главу 5 исследования SunShot Vision Study.
- Использование отработанного тепла усовершенствованных ядерных реакторов. Для получения дополнительной информации см. U.S. План исследований и разработок в области атомного водорода Министерства энергетики.
Были исследованы многочисленные циклы солнечного термохимического расщепления воды для производства водорода, каждый с различными наборами рабочих условий, инженерными проблемами и возможностями производства водорода. Фактически, в литературе описано более 300 циклов разделения воды. Для получения дополнительной информации см. Исследования по солнечному термохимическому производству водорода: выбор термохимического цикла и инвестиционный приоритет.
Два примера циклов термохимического расщепления воды, «прямой» двухступенчатый термический цикл оксида церия и «гибридный» цикл хлорида меди, показаны на рисунке 2. Обычно прямые циклы менее сложны с меньшим количеством шагов, но они требуют более высокой производительности. температуры по сравнению с более сложными гибридными циклами.
Почему рассматривается этот путь?
Циклы высокотемпературного термохимического расщепления воды с использованием солнечной и ядерной энергии производят водород с почти нулевыми выбросами парниковых газов с использованием воды и солнечного света или ядерной энергии.
Исследования направлены на преодоление трудностей
Однако остаются проблемы в исследованиях, разработке и демонстрации коммерчески жизнеспособных термохимических циклов и реакторов:
- Необходимо повысить эффективность и долговечность реагентов для термохимического цикла.
- Необходимо разработать эффективные и надежные конструкции реакторов, совместимые с высокими температурами и тепловым циклом.
- Для солнечных термохимических систем необходимо снизить стоимость систем концентрирующих зеркал.
Захватывающий прогресс продолжается в этой области, используя синергию с технологиями концентрированной солнечной энергии и с новыми технологиями производства солнечного топлива.
Производство водорода: фотобиологическое | Министерство энергетики
В фотобиологическом процессе производства водорода используются микроорганизмы и солнечный свет для превращения воды, а иногда и органических веществ в водород. Это долгосрочный технологический путь на ранних стадиях исследований, который имеет долгосрочный потенциал для устойчивого производства водорода с низким воздействием на окружающую среду.
Как это работает?
В фотолитических биологических системах микроорганизмы, такие как зеленые микроводоросли или цианобактерии, используют солнечный свет для расщепления воды на ионы кислорода и водорода. Ионы водорода могут объединяться прямым или косвенным путем и выделяться в виде газообразного водорода. Проблемы для этого пути включают низкие скорости производства водорода и тот факт, что при расщеплении воды также образуется кислород, который быстро ингибирует реакцию производства водорода и может быть проблемой безопасности при смешивании с водородом в определенных концентрациях.Исследователи работают над разработкой методов, позволяющих микробам производить водород в течение более длительных периодов времени и увеличивать скорость производства водорода.
Некоторые фотосинтетические микробы используют солнечный свет как движущую силу для разрушения органических веществ с выделением водорода. Это известно как фотоферментативное производство водорода. Некоторые из основных проблем этого пути включают очень низкую скорость производства водорода и низкую эффективность преобразования солнечной энергии в водород, что делает его коммерчески нежизнеспособным путем производства водорода в настоящее время.
Исследователи ищут способы сделать микробы лучше собирать и использовать энергию, чтобы сделать больше доступной для производства водорода, и изменить их нормальные биологические пути, чтобы увеличить скорость производства водорода.
Почему рассматривается этот путь?
В долгосрочной перспективе технологии фотобиологического производства могут обеспечить экономичное производство водорода из солнечного света с низкими или нулевыми выбросами углерода. Водоросли и бактерии можно выращивать в воде, которую нельзя использовать для питья или в сельском хозяйстве, и потенциально они могут даже использовать сточные воды.
Исследования направлены на преодоление трудностей
Исследования в области фотобиологического водорода в последние годы продвинулись вперед, но все еще находятся на начальной стадии. Существует ряд общих проблем как при фотолитическом, так и при фотоферментативном биологическом производстве водорода. Многие из этих проблем требуют дальнейшего изучения фундаментальных, фундаментальных вопросов, таких как исследование, проводимое в Управлении науки Министерства энергетики США, в том числе:
- Повышение активности ферментов, производящих водород, а также метаболических путей, необходимых для реакций, для увеличения скорости производства водорода.
- Разработка штаммов, которые могут эффективно использовать солнечный свет и другие ресурсы для увеличения выхода водорода.
- Разработка деформаций и конфигураций реакторов, которые в конечном итоге могут быть использованы в больших масштабах для промышленного производства водорода.
Производство водорода — Управление энергетической информации США (EIA)
Как производится водород?
Чтобы произвести водород, он должен быть отделен от других элементов в молекулах, в которых он находится.Есть много различных источников водорода и способов его производства для использования в качестве топлива. Двумя наиболее распространенными методами производства водорода являются паровой конверсии метана и электролиз (разделение воды на электричество. Исследователи изучают другие методы.
Процессы производства водорода
Источник: Министерство энергетики США, Управление энергоэффективности и возобновляемых источников энергии, Производство водорода (общественное достояние)
Нажмите для увеличения
Паровой риформинг метана — широко используемый метод получения коммерческого водорода
Паровой риформинг метана составляет почти весь коммерчески производимый водород в Соединенных Штатах.Коммерческие производители водорода и нефтеперерабатывающие заводы используют паровой риформинг метана для отделения атомов водорода от атомов углерода в метане (Ch5). При паровом риформинге метана высокотемпературный пар (от 1300 ° F до 1800 ° F) под давлением 3–25 бар (1 бар = 14,5 фунтов на квадратный дюйм) реагирует с метаном в присутствии катализатора с образованием водорода, окиси углерода. , и относительно небольшое количество диоксида углерода.
Природный газ является основным источником метана для производства водорода промышленными предприятиями и нефтеперерабатывающими заводами.Свалочный газ / биогаз, который можно назвать биометаном , является источником водорода для нескольких электростанций на топливных элементах в Соединенных Штатах. Биотопливо и нефтяное топливо также являются потенциальными источниками метана.
Электролиз использует электричество
Электролиз — это процесс отделения водорода от воды с помощью электрического тока. Электролиз обычно используется для демонстрации химических реакций и производства водорода на уроках естественных наук в средней школе. В крупном промышленном масштабе процесс может называться power-to-gas , где power — электричество, а водород — газ .Сам по себе электролиз не производит никаких побочных продуктов или выбросов, кроме водорода и кислорода. Электроэнергия для электролиза может поступать из возобновляемых источников, таких как гидроэнергия, солнечная энергия или энергия ветра. Если электричество для электролиза производится из ископаемого топлива (угля, природного газа и нефти) или сжигания биомассы, то соответствующее воздействие на окружающую среду и выбросы углекислого газа косвенно связаны с электролизом.
Другие способы получения водорода
- Использование микробов, которые используют свет для производства водорода
- Преобразование биомассы в газ или жидкость и отделение водорода
- Использование технологий солнечной энергии для отделения водорода от молекул воды
Категории водорода
Производители водорода, продавцы, государственные учреждения и другие организации могут классифицировать или определять водород в соответствии с источниками энергии для его производства.Например, водород, произведенный с использованием возобновляемых источников энергии, может называться возобновляемым водородом или зеленым водородом . Водород, полученный из угля, может называться коричневым водородом , а водород, полученный из природного газа или нефти, может называться серым водородом . Производство коричневого или серого водорода в сочетании с улавливанием и хранением / секвестрацией углерода может обозначаться как синий водород .
Последнее обновление: 7 января 2021 г.
Производство и доставка водорода | Водород и топливные элементы | Водородные и топливные элементы
Исследователи из NREL разрабатывают передовые процессы для экономичного производства водорода. из устойчивых ресурсов.
Узнайте, как NREL разрабатывает и продвигает ряд путей к возобновляемому водороду производство. Текстовая версия
Биологическое расщепление воды
Некоторые фотосинтетические микробы используют световую энергию для производства водорода из воды в виде часть их метаболических процессов.Поскольку кислород образуется вместе с водородом, фотобиологическая технология производства водорода должна преодолевать присущую ему чувствительность к кислороду ферментативных систем, выделяющих водород. Исследователи NREL решают эту проблему с помощью скрининг на естественные организмы, которые более устойчивы к кислороду и создание новых генетических форм организмов, способных поддерживать производство водорода в наличие кислорода.Исследователи также разрабатывают новую систему, в которой используется метаболический переключение (лишение серы) на цикл клеток водорослей между фотосинтетическим ростом фаза и фаза производства водорода.
Контактное лицо: Мария Гирарди
Ферментация
Ученые NREL разрабатывают технологии предварительной обработки для преобразования лигноцеллюлозного биомасса в сырье, богатое сахаром, которое может быть непосредственно ферментировано для получения водорода, этанол и ценные химикаты.Исследователи также работают над определением консорциума. Clostridium, которые могут непосредственно сбраживать гемицеллюлозу до водорода. Другое исследование области включают в себя биоразведку эффективных целлюлолитических микробов, таких как Clostridium thermocellum, который может сбраживать кристаллическую целлюлозу непосредственно до водорода, чтобы снизить затраты на сырье. После идентификации модельной целлюлолитической бактерии ее потенциал для генетических манипуляций, включая чувствительность к антибиотикам и простоту генетического трансформация, будет определена.Будущие проекты ферментации NREL будут сосредоточены на по разработке стратегий для создания мутантов, которые селективно блокируются от производства отработанные кислоты и растворители для максимального увеличения выхода водорода.
Контактное лицо: Пин-Чинг Манесс
Конверсия биомассы и отходов
Водород можно производить путем пиролиза или газификации ресурсов биомассы, таких как сельскохозяйственные остатки, такие как скорлупа арахиса; бытовые отходы, включая пластмассы и отходы смазка; или биомасса, специально выращенная для использования в энергии.Пиролиз биомассы производит жидкий продукт (био-масло), содержащий широкий спектр компонентов, которые могут быть разделены на ценные химические вещества и топливо, включая водород. Исследователи NREL в настоящее время сосредоточены на производстве водорода путем каталитического риформинга пиролиза биомассы товары. Конкретные области исследований включают реформирование потоков пиролиза и разработку и испытание псевдоожижаемых катализаторов.
Контактное лицо: Ричард Френч
Фотоэлектрохимическое расщепление воды
Самый чистый способ производства водорода — использование солнечного света для прямого разделения воды. в водород и кислород.Технология многопереходных ячеек, разработанная фотоэлектрическими промышленность используется для фотоэлектрохимических (PEC) систем сбора света, которые генерируют достаточное напряжение для разделения воды и стабильны в среде вода / электролит. Разработанная NREL система PEC производит водород из солнечного света без дополнительных затрат. и усложнение электролизеров, при КПД преобразования солнечной энергии в водород На 12,4% ниже теплотворная способность при использовании отраженного света.Ведутся исследования, чтобы выявить больше эффективные, недорогие материалы и системы, долговечные и устойчивые к коррозии в водной среде.
Контактное лицо: Джон Тернер или Тодд Дойч
Солнечная система термоделирования воды
Исследователи NREL используют реактор High-Flux Solar Furnace, чтобы концентрировать солнечную энергию и генерировать температуры от 1000 до 2000. градусов Цельсия.Для термохимической реакции требуются сверхвысокие температуры. циклы для производства водорода. Такой высокотемпературный, высокопоточный, термохимический процессы предлагают новый подход к экологически безопасному производству водорода. Очень высокие скорости реакции при таких повышенных температурах вызывают очень быструю реакцию. скорости, которые значительно увеличивают производительность и более чем компенсируют прерывистый характер солнечного ресурса.
Контактное лицо: Джуди Неттер
Возобновляемый электролиз
Возобновляемые источники энергии, такие как фотоэлектрическая энергия, ветер, биомасса, гидро- и геотермальная энергия. может обеспечить нашу страну чистой и устойчивой электроэнергией. Однако возобновляемая энергия источники естественным образом изменчивы, требуют накопления энергии или гибридной системы для размещения суточные и сезонные изменения.Одно из решений — производить водород путем электролиза — расщепления с электрическим током — воды и использовать этот водород в топливном элементе для производства электричество в периоды низкого производства электроэнергии или пикового спроса, или для использования водорода в транспортных средствах на топливных элементах.
Исследователи из Центра интеграции энергетических систем NREL и Центра испытаний и исследований водородной инфраструктуры изучают вопросы, связанные с использованием возобновляемых источников энергии для производства водород путем электролиза воды.NREL тестирует интегрированные системы электролиза и исследует варианты дизайна для снижения капитальных затрат и повышения производительности.
Узнайте больше об исследованиях электролиза возобновляемых источников энергии NREL.
Контактное лицо: Кевин Харрисон
Надежность шланга дозатора водорода
С акцентом на снижение затрат и повышение надежности и безопасности, NREL выполняет ускоренное тестирование и циклическое тестирование шлангов для подачи водорода на 700 бар на предприятии по интеграции энергетических систем с использованием автоматизированной робототехники для моделирования полевых условий.Посмотрите видео с роботом, который имитирует повторяющееся напряжение человека, сгибающегося и скручивающегося. шланг для подачи водорода в бортовой накопительный бак транспортного средства на топливных элементах. Исследователи проводить механические, термические испытания и испытания под давлением для новых и бывших в употреблении систем подачи водорода шланги. Материал шланга анализируется для выявления проникновения водорода, охрупчивания и т. Д. и зарождение / распространение трещины.
Контактное лицо: Кевин Харрисон
Анализ путей производства и доставки водорода
NREL выполняет анализ на системном уровне в различных областях устойчивого производства водорода. и пути доставки.Эти усилия сосредоточены на определении улучшений статуса, в результате от технологических достижений, стоимости как функции объема производства и потенциала для снижения затрат. Результаты помогают выявить препятствия на пути к успеху этих путей. основные факторы затрат и остающиеся проблемы НИОКР. Разработанные NREL тематические исследования по анализу водорода обеспечивают прозрачные прогнозы текущих и будущих затрат на производство водорода. Узнайте больше о работе NREL по системному анализу.
Контактное лицо: Женевьева Заур
Сеть энергетических материалов HydroGEN
NREL служит ведущей лабораторией консорциума HydroGEN Energy Materials Network (EMN).
Последние публикации
Прямое преобразование солнечной энергии в водород с помощью инвертированного метаморфического многопереходного полупроводника Архитектура, Энергия природы (2017)
Замечательная стабильность немодифицированных фотокатодов GaAs при выделении водорода в Кислый электролит, Журнал химии материалов A (2016)
Эффективность преобразования солнечной энергии в водород: яркий свет на производительность фотоэлектрохимических устройств, Энергетика и экология (2016)
Обратимая пассивация поверхности GaInP2 за счет адсорбции воды: модельная система для зависимости от окружающей среды Фотолюминесценция, Журнал физической химии C (2016)
CO2-фиксирующий метаболизм одного углерода в разрушающей целлюлозу бактерии Clostridium thermocellum, Proceedings of the National Academy of Sciences (2016)
Путь фосфокетолазы способствует метаболизму углерода у цианобактерий, Nature Plants (2016)
Контакт
Huyen Dinh
Эл. Почта
303-275-3605
Основы водорода | NREL
Водород — вторичный источник энергии.Он хранит и транспортирует произведенную энергию из других ресурсов (ископаемое топливо, вода и биомасса).
Водород как носитель энергии
Потому что водород не существует в природе в свободном доступе и производится только из других источников энергии, он известен как энергоноситель . Это экологически чистое топливо, и в сочетании с кислородом в топливном элементе водород производит тепло и электричество, используя только водяной пар в качестве побочного продукта.
Водород может быть получен непосредственно из ископаемого топлива или биомассы, либо его можно производить. пропуская электричество через воду, разбивая воду на составляющие компоненты водорода и кислорода. Некоторые видят в будущем «водородную экономику», в которой водород производится из различных источников энергии, хранится для дальнейшего использования, по трубам, куда это необходимо, а затем чисто преобразовать в тепло и электричество.
Большая часть водорода сегодня производится путем парового риформинга природного газа. Но природный газ это уже хорошее топливо, которое быстро становится все меньше и дороже. Это также ископаемое топливо, поэтому углекислый газ, выделяемый в процессе реформирования добавляет парниковый эффект. Для своего веса водород имеет очень высокую энергию, но очень низкое энергопотребление для своего объема, поэтому необходимы новые технологии для его хранения и транспортировки.А технология топливных элементов все еще находится на ранней стадии разработки и требует повышения эффективности. и долговечность.
Превращение водородной экономики в реальность
Проблемы, над которыми работают исследователи NREL, чтобы сделать водородную экономику реальностью включают:
Топливные элементы
Совершенствование технологии топливных элементов и материалов, необходимых для топливных элементов.
Производство
Разработка технологии эффективного и рентабельного производства водорода из возобновляемых источников источники энергии.
Хранилище
Разработка технологии эффективного и экономичного хранения и транспортировки водорода.
Дополнительные ресурсы
Для получения дополнительной информации о водороде посетите следующие ресурсы:
Основы водородного топлива
U.