Керамзитоблок теплопроводность: состав, виды, характеристики плюсы и минусы блоков из керамзитобетона

Содержание

состав, виды, характеристики плюсы и минусы блоков из керамзитобетона

1. Состав керамзитоблока.

Представим состав керамзитобетонной смеси с удельным весом 1500 кг/м 3 в виде таблицы*.

Таблица 1: Состав керамзитобетонной смеси

Наименование материалаМасса, кг% от массы
Цемент М400 430 26,7
Керамзит 510 34
Песок 420 28
Вода 140 9,3

*Данные приведены для 1м3 керамзитобетонной смеси.

При снижении % содержания цемента и песка удельный вес керамзитобетонной смеси будет уменьшаться.

В составе легких смесей с удельным весом до 1000 кг/м 3 песок может отсутствовать, содержание цемента уменьшается, а керамзита - растёт.

1.1. Цемент (ГОСТ 10178-85).

Для производства блоков необходим цемент марки не ниже М-400.

1.2. Керамзит (ГОСТ 9757-90).

Керамзит – легкий пористый материал в виде гравия, получаемый в результате обжига легкоплавких глинистых пород. Чаще всего для производства керамзитоблоков используют фракции 5-10 мм.

1.3. Песок (ГОСТ 8736-93).

В качестве наполнителя используется песок крупной или средней фракций, который создаёт скелет блока.

1.4. Вода (ГОСТ 23732-79).

Предпочтительно применение воды без загрязняющих примесей.

2. Классификация.

Керамзитоблоки являются стеновыми бетонными камнями и должны соответствовать ГОСТ 6133-99. Они классифицируются по следующим параметрам:

2.1. По назначению.

  • Теплоизоляционные (удельный вес 350-600 кг/м 3) - применяют для утепления зданий.
  • Конструктивно-теплоизоляционные (удельный вес 600-1400 кг/м 3) - используют преимущественно для возведения однослойных стеновых панелей.
  • Конструктивные (удельный вес 1400-1800 кг/м 3) - используются для несущих конструкций домов и инженерных сооружений (мосты, эстакады).

2.2. По применению.

  • Стеновые блоки – для строительства стен (как наружных, так и внутренних).
  • Перегородочные блоки – для возведения перегородок.

2.3. Размеры.

  • ГОСТ 6133-99 предусматривает следующие размеры блоков для стен: 90х190х188мм, 190х190х188мм, 290х190х188мм, 390х190х188мм, 288х138х138мм, 288х288х138мм.
  • Размеры перегородочных блоков - 190х90х188мм, 390х90х188мм, 590х90х188мм.

По согласованию с заказчиком размеры блоков могут меняться.

2.4. По форме.

  • Полнотелые – сплошные блоки без пустот.
  • Пустотелые – блоки как с глухими, так и со сквозными пустотами, формируемыми в процессе изготовления для придания блоку необходимых эксплуатационных характеристик.

3. Характеристики.

3.1. Прочность.

Значения прочности керамзитоблоков:

  • теплоизоляционных - 5-25 кг/см2;
  • конструктивно-теплоизоляционных – 35 - 100 кг/см2;
  • конструктивных - 100 - 500 кг/см2.

3.2. Объёмный вес.

Объёмный вес керамзитоблоков:  

  • теплоизоляционных - 350-600 кг/м 3;
  • конструктивно-теплоизоляционных – 600 - 1400 кг/м 3;
  • конструктивных - 1400 - 1800 кг/м 3.

3.3. Теплопроводность.

Теплопроводность керамзитоблоков – 0,14-0,66 Вт/(м*К). Теплопроводность растёт с увеличением содержания цемента. По этому показателю теплоизоляционные блоки находятся на уровне дерева. Даже конструктивные предпочтительнее бетона и кирпича. Применение в строительстве пустотелых блоков уменьшает теплопроводность стен и делает дом теплее.

3.4. Морозостойкость.

Морозостойкость увеличивается с уменьшением пористости. Минимальные значения (15 - 50 циклов) - у теплоизоляционных керамзитоблоков. У конструктивно-теплоизоляционных - до 150 циклов, у конструктивных - до 500.

3.5. Усадка.

Усадка  керамзитоблоков находится на уровне тяжелых бетонов - 0,3-0,5 мм/м.

3.6. Водопоглощение.

Водопоглощение керамзитоблоков – 5 - 10% по массе. Значение может быть снижено путём добавления в керамзитобетонную смесь комплексных добавок и пластификаторов.

3.7. Паропроницаемость.

Паропроницаемость керамзитоблоков - 0,3-0,9 мг/(м*ч*Па). Значение увеличивается с увеличением пористости и степени пустотелости. Для теплоизоляционных блоков значения максимальны, для конструктивных – минимальны.

3.8. Огнестойкость.

Предел огнестойкости керамзитоблоков – 180 минут при температуре 1050 С.

3.9. Стоимость.

Стоимость керамзитоблоков зависит от степени пустотелости, от прочности, определяющейся содержанием цемента, и находится в пределах 2200-3500 руб/м3.

3.10. Звукоизоляция.

Звукоизоляционные свойства керамзитоблоков улучшаются с увеличением пористости. Перегородка из теплоизоляционных блоков размерами 590х90х188 мм обеспечивает звукоизоляцию на уровне 45-50 Дб.

3.11. Максимальная этажность строения.

Конструктивные керамзитоблоки позволяют осуществлять высотное строительство. Возможно возведение 12-этажных домов

Таблица 2: Характеристики керамзитоблоков

Наименование показателяЗначениеКомментарий
Прочность, кг/см2 5-500 Минимальные значения прочности - у легких теплоизоляционных блоков, максимальные -  у самых тяжелых конструктивных
Объемный вес, кг/м3 350 -1800 При увеличении % содержания цемента в керамзитобетонной смеси увеличится объемный вес и прочность
Теплопроводность, Вт/м*К 0,14 – 0,66 Показатель лучше, чем у кирпича и бетона; ухудшается с ростом % содержания цемента.
Морозостойкость, циклы 15-500 Минимальные значения - у легких теплоизоляционных блоков, максимальные -  у самых тяжелых конструктивных
Усадка, мм/м 0,3 - 0,5 Хороший показатель на уровне тяжелых бетонов
Водопоглощение, % 5-10 Хороший показатель, который может быть улучшен применением комплексных добавок и пластификаторов
Паропроницаемость, мг/(м*ч*Па) 0,3-.0,9 Высокое значение в сравнении с другими стройматериалами; увеличивается с ростом пористости и степени пустотелости блоков
Огнестойкость, мин. при температуре 1050 С 180 Значение выше, чем у других легких бетонов
Стоимость руб/м3 2200-3500 Зависит от содержания цемента в смеси и степени пустотелости
Звукоизоляция, Дб 45-50 Значение для перегородки из теплоизоляционных блоков размерами 590х90х188 мм; показатель растёт с увеличением содержания керамзита
Максимальная этажность строения, этажей 12 Достигается при использовании конструктивных блоков

4. Преимущества керамзитоблоков в сравнении с альтернативными материалами.

  • Экологическая безопасность. Керамзитобетон производится из натуральных материалов (цемент, песок, глина), что обеспечивает его высокую экологичность. Материалу присвоен первый класс радиационной безопасности. Он полностью соответствует современным санитарно-гигиеническим требованиям по показателям звукоизоляции и паропроницаемости.
  • Теплопроводность керамзитобетона и использование в строительстве пустотелых блоков делает дома из этого материала теплыми.
  • Низкий удельный вес керамзитоблоков позволяет сэкономить на устройстве фундамента и транспортировке.
  • азмеры и вес блоков снижают затраты рабочей силы и цементного раствора при возведении стен, ускоряют строительство.
  • Низкая гидроскопичность и, как следствие, высокая морозоустойчивость повышают срок службы сооружений из керамзитоблоков, дают возможность экономии на защите стен.
  • Применение блоков со сквозными пустотами позволяет сооружать внутри стен силовые каркасы, повышающие несущую способность конструкций.
  • Низкие значения усадки обеспечивают экономию на косметических ремонтах.

5. Минусы строительства из керамзитоблоков.

  • Керамзитобетон уступает в прочности тяжелым бетонам. Нежелательно использование керамзитоблоков при устройстве фундаментов.
  • Неидеальная геометрия блоков.
  • При многоэтажном строительстве необходимо использовать блоки с повышенным содержанием цемента. Следствием этого является необходимость устройства более мощного фундамента, ухудшение теплоизоляционных качеств сооружения и общее удорожание проекта.

6. Область применения.

В зависимости от назначения керамзитоблоки могут использоваться для утепления домов, строительства зданий (в том числе многоэтажных), возведения инженерных сооружений (мостов, эстакад).

7. Способы транспортировки.

Перевозка керамзитоблоков осуществляется любым транспортом на поддонах. Высота пакета с поддоном не должна превышать 1,3 м. Камни с глухими отверстиями укладывают пустотами вниз. Сформированные транспортные пакеты складируются в один ярус. Не допускается проведение разгрузочно-погрузочных работ вручную.

Теплопроводность керамзитобетонных блоков по ГОСТ, расчеты толщины стен

С развитием технологий в строительной сфере предоставлена возможность сокращения сроков работ и экономии средств. Одним из способов удешевления материалов является возведение здания из керамзитобетонных блоков. Эту методику нельзя назвать новой, хотя широкое распространение она получила относительно недавно. Благодаря целому ряду преимуществ и сравнительным характеристикам с другими видами (кирпичом, ракушечником), можно говорить о превосходящих качествах керамзитобетона.

Определение теплопроводности блоков

Производство блоков подразумевает смешивание цемента, песка и гравия размером от 5 мм. От величины наполнителя зависят энергосберегающие свойства и прочность. Чем более крупные зерна добавляются в смесь, тем выше показатель теплопроводности. Этот коэффициент керамзитобетона обозначают буквой λ, применяемой при расчетах количества энергии, которая проходит через несущую толщиной в 1 метр, создает сопротивление на площади в 1 м2 с разницей температуры в 1°С/час на внутренней и внешней сторонах поверхности. Факторы, влияющие на коэффициент теплопроводности керамзитоблоков, заключаются в следующих понятиях:

1. Количество и качество сырья, используемого для изготовления. Стандартно замешивают 1 долю цемента, 2 – кварцевого песка, 3 – гранулированного компонента.

2. Большое количество воздушных ячеек делает материал легким, что снижает коэффициент теплопроводности. Чем меньше пористость, тем камень имеет больший вес, что увеличивает показатель.

3. Определенных размеров керамзитоблоков не существует, их длина – диапазон от 250 до 450 мм, ширина – 180-450 мм, высота – 180-250 мм.

4. Также играет роль марка бетона, каждая имеет свою прочность на осевое сжатие (максимальная нагрузка кг/см2, которую он выдерживает на 28 день после отвердевания). У материала М35 и М50 эта величина составляет В3,5, М75 и 100 – В7,5, М200 – В1.

При определении теплоизоляции керамзитобетонных блоков можно воспользоваться таблицей:

Плотность (кг/м3)В сухом состоянии Вт (м°С)В процессе эксплуатации
18000,7-0,80,8-0,9
16000,5-0,60,7-0,8
14000,4-0,50,6-0,7
12000,3-0,40,5-0,6
10000,2-0,30,4-0,5
8000,1-0,20,3-0,4
6000,1-0,150,25-0,30
5000,10,15-0,25

После определения теплопроводности керамзитоблоков делают расчеты толщины стен. В формуле этот показатель обозначают буквой δ. Также для вычисления используется величина сопротивления передачи энергии, зависящая от типа зданий и климатических условий и имеющая символ Rreg. Если взять среднее значение около 3 единиц, получится формула: δ= Rreg х λ. Допустим, теплопроводность блока составляет 0,2 Вт(м°С), в результате: δ=3х0,2=0,6 м – толщина стены.

Разновидности керамзитобетона

В зависимости от своего предназначения блоки делятся на несколько типов:

1. При строительстве для теплоизоляции используется материал плотностью 400-600 кг/м3. Величина проводимости энергии у него составляет 0,1-0,17 Вт(м°С), прочность на сжатие – 5-22 кг/см2. Такой керамзитобетонный камень выдерживает только собственный вес, имеет неплотную структуру с большим количеством пустот, но обладает самым высоким показателем теплоизоляции.

2. Для сооружения несущих стен, цокольных этажей применяются полнотелые конструктивные блоки с содержанием бетона марок М300-400 и гравием мелких фракций. Является наиболее прочным среди всех видов, плотность составляет 1800 кг/м3. Также имеет высокие характеристики теплоизоляции – 0,55 Вт(м°С). Использование стеновых блоков позволяет увеличить площадь помещения за счет небольшой толщины стен. При этом скорость укладки в несколько раз выше, чем работа с кирпичом при тех же объемах.

3. На объектах с необходимостью снижения веса несущих используют конструктивно-теплоизоляционный керамзитобетон. Также этот материал применяется при производстве больших блоков и стеновых панелей. Плотность после застывания составляет 800 кг/м³, теплопроводность – 0,45Вт(м°С). При одинаковой толщине стены кирпич обладает более низкими свойствами.

По конструкции и размерам керамзитобетон можно разделить на две класса: стеновой и перегородочный вид. В таблице показаны типовые формы и их главные характеристики:

Классификация по количеству пустотПараметры, ммПлотность (кг/м3)Процент пустотностиМаркаМорозостойкостьВес, кг
4 — канальный390х190х188800-90035-40М50F5010-15
7
8
1015-18
Полнотелый390х190х188900-10000М7517-20
2-пустотный390х190х2301200-140020-25М5015-17

Для перегородок

Пустотелый390х90х188900-100025-30М35Не нормируется5-6
Полнотелый390х90х1881000-12000М508-10

Теплопроводность керамзитобетонных блоков в первую очередь зависит от их плотности и количества пустот. Чем крупнее фракции гравия, тем выше величина. Благодаря основному натуральному компоненту, материал обладает высокой экологической безопасностью, способен дышать, морозоустойчив и не поддается гниению.

Теплопроводность керамзитобетонных блоков: от чего зависит, таблица

Керамзитобетонные блоки имеют широкую сферу применения, в зависимости от марки, формы и пустотности они используются в качестве теплоизолятора или кладочных элементов для конструкций с разными несущими способностями. Их главными характеристиками являются прочность, плотность, морозостойкость и теплопроводность, все они связаны между собой. Последний параметр учитывается при проведении теплотехнического расчета для получения рекомендуемой строительными нормами толщины стен.

Коэффициент теплопроводности в количественном выражении показывает способность материала к проведению тепла: чем он ниже, тем выше его энергосберегающие свойства. Использование блоков с хорошим сопротивлением к потерям позволяет снизить затраты на обогрев зданий в зимнее время и кондиционирование летом. Обожженная глина является отличным теплоизолятором, термопроводность керамзитовых гранул варьируется в пределах 0,099-0,18 Вт/м·°C. Они считаются оптимальным заполнителем для получения легких бетонов и кладочных изделий.

Факторы влияния на величину теплопроводности керамзитоблоков

Этот строительный материал имеет многокомпонентную основу. Крошка без исключения будет иметь меньшую термопроводность, чем чистые обожженные гранулы вспученной глины. Ключевое влияние имеет качество используемого керамзита, характеристика зависит от размера и типа фракций, степени поризации, целостности оболочки, вида сырья и технологии обжига. Лучшие показатели имеет гравий с низкой насыпной плотностью и диаметром частиц в пределах 10-20 мм (0,099-0,108 Вт/м·°C), худшие – дробленый щебень и песок.

Повышение доли цемента в бетоне снижает его способности к энергосбережению.

Взаимосвязь между видом наполнителя и теплопроводностью керамзитобетонного камня отражена в таблице:

Вид инертного наполнителя Плотность бетона, кг/м2 Значение коэффициента, Вт/м·°C
Керамзитовый песок 500 0,14
600 0,16
800 0,21
1000 0,27
Кварцевый песок, используемый для приготовления поризованных элементов 800 0,23
1000 0,33
1200 0,41
Перлит 800 0,22
1000 0,28

Помимо параметров используемых компонентов коэффициент теплопроводности керамзитоблока зависит от следующих факторов:

  • Марки по плотности: чем она выше, тем хуже теплоизоляционные свойства материала.
  • Пустотности, а именно – количества и размера щелей в блоках. У данной группы ее максимальное значение достигает 40%, что соответствует 0,19 Вт/м·°C. Размер фракций керамзита, используемого для изготовления крупнощелевых разновидностей ограничен, качественные полнотелые изделия могут не уступать им в качестве.
  • Условий эксплуатации, несмотря на низкое водопоглощение (5-10%) при длительном контакте с влагой блоки могут начинать ее накапливать, что отрицательно сказывается на величине теплового сопротивления. Худшие показатели наблюдается при попадании и замерзании воды внутри полостей. Исключить риски помогают изделия с закрытыми пустотами, но они стоят немного дороже.

Тип блока Число щелей Размеры, мм Вес, кг Пустотность, % Плотность, кг/м3 Теплопроводность в сухом состоянии, Вт/м·°C
Перегородочный полнотелый 0 390×188×90 8 0 1200 0,36
То же, пустотелый 2 9 25 900 0,3
Стеновой 0 390×188×190 17 0 1200 0,36
2 14 20 1000 0,27
4 11-14 40 800-1000 0,19-0,27
7
8
10 390×188×230 13-16

В зависимости от целевого назначения выделяют три группы керамзитоблоков:

  • Теплоизоляционные, с плотностью в пределах 300-900 кг/м3 и теплопроводностью не более 0,2 Вт/м·°C. Не нормируется по прочности и подбирается при утеплении каркасных систем или закладывается между другими стеновыми изделиями.
  • Конструкционно-теплоизоляционные – от 700 до 1200 кг/м3, до 0,5 Вт/м·°C, выдерживаемые нагрузки от 35 до 75 кгс/м2. Эта разновидность наиболее востребована в частном строительстве, сфера использования включает возведение внутренних перегородок, панелей и стен, в том числе несущие.
  • Конструкционные – от 1200 до 1800 кг/м3, с теплопроводностью до 0,66 Вт/м·°C. Из-за высокой нагрузки на фундамент блоки с такими характеристиками редко используются для возведения стен частных домов, область их применения совпадает с марками тяжелого бетона.

Взаимосвязанные характеристики

Теплопроводность является основным показателем, учитываемым при расчете толщины строительных систем. Находится по формуле: δ=R·λ, где R – величина теплового сопротивления, определяемая из таблиц с учетом климатических условий региона и типа конструкции, среднее значение по Москве составляет 3-3,1 м2·°C/Вт.

Используя данные производителя, находится минимально допустимая толщина стены из керамзитоблоков, разделяющей разнотемпературные зоны при поддержке комфортных условий внутри дома. При несоответствии ширины кладки с полученным результатом здания нуждаются в наружном утеплении. Аналогичный расчет проводится при обычной засыпке конструкций грунтами керамзита, итоговые данные применяются для определения правильной толщины прослойки.

вес, теплопроводность, размеры, отзывы, плюсы и минусы

Рейтинг материала

20 out of 5

Экологичность

20 out of 5

Практичность

12 out of 5

Внешний вид

20 out of 5

Легкость укладки

Итоговая оценка

Использование керамзитоблоков в строительстве позволяет снизить затраты на возведение зданий и общий вес конструкции. Это возможно благодаря наличию в их составе заполнителя в виде крупных фракций. Дома из керамзитобетона соответствуют всем архитектурным, эстетическим требованиям и правилам пожарной безопасности. Они отличаются долговечностью, прекрасной теплоизоляцией, устойчивостью к влиянию агрессивной среды.

Характеристики и свойства керамзитоблоков

По своим свойствам керамзитобетон отвечает требованиям технических условий к бетонным стеновым камням.

Характеристики керамзитоблоков:

  • вес варьируется в рамках 5-15 кг;
  • отличаются хорошими прочностными качествами. Использовать их можно не только в малоэтажном строительстве, но и при возведении высоких строений. Благодаря пустотам в материале, можно выполнить скрытый каркас, чтобы несущая способность кладки была выше;
  • плотность составляет 700-1500 кг/м3;
  • имеют невысокую теплопроводность. Поэтому их применение возможно и в теплом, и в холодном климате.

Средние размеры блоков составляют:

  • длина – примерно 240-450 мм;
  • ширина – примерно 190-450 мм;
  • высота – примерно 188-240 мм;

Свойства готовых изделий определяются содержанием керамзита и размером фракций. Чем выше процент керамзита в материале, тем ниже его прочность и теплопроводность. Все характеристики керамзитоблоков определяются ГОСТом и должны иметь соответствующий сертификат соответствия.

Сколько весит керамзитоблок и его стандартные размеры расскажет видео:

Плюсы и минусы керамзитоблоков

Керамзитобетон популярен в строительстве благодаря доступной цене и хорошим качествам. В отличие от древесины, он не подвергается горению и гниению. Преимуществом материала перед металлом является то, что он не ржавеет. При этом керамзитобетон комбинирует лучшие свойства таких материалов, как камень и дерево.

Достоинства керамзитоблоков:

  • имеют теплопроводность на порядок выше, чем обычный бетон;
  • керамзит имеет рельефную поверхность, поэтому обеспечивается качественное сцепление материала с раствором;
  • благодаря особой структуре позволяют существенно повысить звукоизоляцию конструкции;
  • по сравнению с цементным бетоном, имеют более высокий уровень химической стойкости и устойчивости к воздействию влаги. Керамзитобетон не разрушается под действием раствором сульфатов, мягкой воды, углекислот, щелочей и других веществ;
  • не горят, под действием огня не выделяют вредных веществ;
  • обладают хорошей паропроницаемостью;
  • стеновые и фундаментные блоки характеризуются повышенной морозоустойчивостью;
  • кладка керамзитоблоков такая же, как и при работе с керамическим кирпичом, но намного удобнее и легче. Один блок эквивалентен примерно 7 кирпичам;
  • легко укладываются вручную, без использования специальной техники;
  • стоимость кладки ниже, чем у обычного бетона;
  • могут применяться как в жилищном, так и промышленном или гражданском строительстве;
  • могут комбинироваться с различными видами железобетонных изделий, стройматериалов, оконных и дверных проемов;
  • сохраняют свои свойства около 50-75 лет.

Вместе с тем, керамзитобетону присущи и определенные недостатки по сравнению с иными подобными материалами. Из-за высокой пористости физико-механические качества материала (морозоустойчивость, прочность, плотность) несколько снижаются. Если планируется возводить массивное сооружение, необходимо выполнять точный расчет, учитывая прочность материала.

Керамзитоблоки более хрупкие, чем обычные бетонные блоки. Они отлично держат статичные нагрузки, но боятся динамичных деформаций. Гранулы в крупнопористых изделиях легко выковырять вручную. Их не следует ронять, потому что они могут расколоться. При раскрое они образуют неровные края с трещинами, которые легко осыпаются.

Такие особенности материала обусловливают наличие ограничений в его использовании. Допустим, для закладки фундамента рациональнее использовать обычный бетон, поскольку керамзитоблоки могут попросту рассыпаться.

В следующей таблице представлены основные характеристики керамзитобетона в сравнении с характеристиками других популярных строительных материалов.

Технические свойства керамзитобетона и других материалов

Характеристики Керамзитобетон Пенобетон Газобетон Кирпич
Теплопроводность, Вт/м2 0,15-0,45 0,08-0,38 0,12-0,28 0,3-0,8
Плотность, кг/м3 700-1500 450-900 200-600 1000-2000
Водопроницаемость, % 50 95 100 40
Масса, 1м2 стены 500-900 70-900 200-300 1450-2000
Морозоустойчивость, циклов 50-200 25-50 10-30 50-200
Прочность, кг/см2 25-150 10-50 5-20 50-150

 

 Отзывы о керамзитоблоках

Керамзитоблоки удобны в использовании и имеют достаточно простой процесс производства. Однако, многие изготовители добавляют меньше цемента, чем положено по нормам. Поэтому материал получается хрупким, и плиты на него монтировать сложно. При покупке обязательно нужно проверять внешний вид блока на скол.

Керамзитобетон имеет очень много отличных качеств. Это и стоимость, и небольшой расход раствора для кладки, и быстрый монтаж. Но при этом у него можно найти и недостатки. Его прочность не такая высокая, как, например, у кирпича. Поэтому устройство загруженных балок в перекрытии в таком доме невозможно. Кроме того, перевязать основную стену из керамзитоблоков с облицовочным рядом довольно сложно. В этом случае удобнее использовать кирпич.

Подробнее про особенности и мнения людей о керамзитобетонных блоках можно узнать из видео:

 

Понравилась статья? Поделитесь с друзьями в социальных сетях:

Facebook

Twitter

Вконтакте

Одноклассники

Google+

И подписывайтесь на обновления сайта в Контакте, Одноклассниках, Facebook, Google Plus или Twitter.

о чем говорит данный показатель

Популярный материал — блоки из керамзитобетона

Любой строительный материал, предназначенный в первую очередь для возведения стен, обладает свойством теплопроводности в большей или меньшей степени. Данный показатель будет характеризовать климатические условия внутри здания: теплообмен и уровень влажности.

Одним из стеновых материалов, отвечающим требованиям современного домостроения, является керамзитобетон. А теплопроводность керамзитобетонных блоков – одно из самых основных достоинств изделий из этого материала. Об этом немаловажном показателе и пойдет речь в данной статье.

Содержание статьи

Основные технические характеристики материала

Краткий обзор блоков из керамзитобетона

Керамзитобетон в настоящее время получил высокую популярность как среди строителей, так и застройщиков. Это обусловлено высокими показателями качества и сравнительно низкой стоимости продукции.

Так что же представляет собой данный материал?

Как следует из названия, основным компонентом, отличающим керамзитобетонные блоки от схожих изделий для строительства, является керамзит. Материал легкий, недорогой, а главное – прочный и обладающий свойством тепло- и звукоизоляции.

Помимо керамзита в состав блоков входит цемент, песок, вода и органические примеси в виде опилок или золы. Марка керамзита и цемента напрямую влияет на характеристики будущего материала и может варьироваться от М100 до М500.

Керамзит различных фракций

Производственная технология керамзитобетонных блоков достаточно проста, и во многом схожа с производством блоков на основе других материалов. Готовая смесь закладывается в формы, сохнет и обрабатывается под воздействием высокой температуры.

Желающие сэкономить на строительстве, могут вполне попробовать сделать блоки из керамзитобетона своими руками. Однако при этом стоит учесть, что возможность изготовления некачественной продукции вырастает в разы.

Классификация керамзитобетона и область применения

В зависимости от пропорций составляющих материалов, некоторых различий в производственных процессах и области применения, различают керамзитобетон трех видов:

  • Теплоизоляционный
  • Конструктивно-теплоизоляционный
  • Конструктивный

Теплоизоляционный керамзитобетон: коэффициент теплопроводности – от 0,3

Рассмотрим более подробно:

  1. Первый тип керамзитобетона используется исключительно в качестве теплоизоляции. Такой блок обладает малым весом и низкой плотностью, а вот свойство теплоизоляции, или температурного обмена у него значительно выше, чем у большинства материалов. Как видно на фото, теплоизоляционный блок внешне отличается особо выраженной пористостью.
  2. Второй тип – обладает большей плотностью и теплопроводностью, за счет этого показатели прочности возрастают, однако свойство передачи температур значительно снижается. Используется данный тип блока в качестве материала для возведения перегородок и внутренних стен.
  3. Третий тип, конструктивный, имеет наибольшую плотность. Может использоваться в качестве облицовочного стенового материала, для возведения перегородок с целью звукоизоляции и наружных стен малоэтажных построек. Такие блоки зачастую применяются в качестве одного из составляющих несущих конструкций при сооружении различных инженерных строений. Например, моста. Иногда используются как альтернатива бордюрному камню. Также может стать опорой для скамьи.

Обратите внимание! Каждый из данных видов керамзитобетонных блоков имеет свое достоинство и недостаток — и тут уж придется сделать выбор: либо страдает теплопроводность, либо прочность. Но при правильном подходе, это может и не отразиться на будущем здании. Например, теплоизоляционные блоки, обладающие наименьшей плотностью, отлично подойдут для строительства бани, для которой сохранение тепла – наиболее значимо. А вот при строительстве двухэтажного дома, лучше отдать предпочтение более плотным изделиям.

Теплопроводность как один из важнейших свойств материала для кладки стен

Теплопроводность, как физическое свойство предмета, представляет собой способность материала отдавать тепло. Коэффициент теплопроводности указывает на то, с какой скоростью и в каком объеме происходит передача энергии от более теплого предмета к холодному за один час, на площади, в основании равной 1 м2 и толщиной в 1 метр.

Показатели теплопроводности

Если сказать проще, то коэффициент теплопроводности керамзитобетонных блоков отвечает за способность сохранения температуры внутри здания — и чем выше данный показатель, тем быстрее строение будет нагреваться либо охлаждаться.

Разберемся, что же влияет на количественное значение коэффициента? Существует ряд факторов, оказывающих непосредственное влияние на способность к теплообмену стен будущего дома.

К ним относятся:

  • Пористость блока. На данный показатель влияет количество керамзита и его фракция. Чем больше пор, тем меньше вес и плотность, что в свою очередь влияет и на теплопроводность.
  • Размер блока и его пустотность
  • Исходный материал: соотношение пропорций и марка.

Рассмотрим всё это в форме таблицы более подробно: Зависимость теплопроводности блока от его плотности.

Теплопроводность керамзитобетона Вт/(м·°С) заводской показатель Показатель теплопроводности в условиях эксплуатации Вт/(м·°С) Показатель плотности
0,12 0,15-0,2 500 кг/м3
0,15 0,20-0,26 600 кг/м3
0,20 0,25-0,30 800 кг/м3
0,25 0,3-0,4 1000 кг/м3
0,35 0,4-0,5 1200 кг/м3
0,45 0,55-0,65 1400 кг/м3
0,55 0,7-0,8 1600 кг/м3
0,65 0,82-0,9 1800 кг/м3

Таблица 2. Краткая инструкция по расходу материала при приготовлении смеси для керамзитобетонных блоков разной плотности.

Цемент М400 Плотность керамзита, кг/м3 Количество керамзита, м3 Вода, л Песок, кг Плотность керамзитобетона
250 700 1,0 140 1000
430 700 0,8 140 420 1500
430 600 0,68 140 680 1600
400 700 0,72 140 640 1600
410 600 0,56 140 880 1700
380 700 0,62 140 830 1700

Соотношение материалов в составе керамзитобетона

Таблица 3. Пустотность и ее влияние на свойства и массу блока

Тип блока Пустотность, % Теплопроводность Масса

Четырехщелевой

40 0,19-0,27 11-14

Семищелевой

40 0,19-0,27 11-14

Восьмищелевой

40 0,19-0,27 11-14

Многощелевой

40 0,19-0,27 11-14

Двухпустотный

20 0,27 14

Полнотелый

0 0,36 17

Пустотелый перегородочный

25 0,3 6

Полнотелый перегородочный

0 0,36 8

Помимо теплообмена, керамзитобетонные блоки обладают способностью контролировать уровень влажности в помещении: при повышении этого значения, влага поглощается, а при преобладании сухого микроклимата, влага отдается, таким образом, устанавливая наиболее комфортные условия пребывания.

Связь теплопроводности блоков и толщины стен будущего строения

Коэффициент теплопроводности керамзитобетона участвует в формуле по вычислению требуемой нормативной толщины будущих стен, которая равна произведению значения сопротивления тепловой передачи (δ), и показателя проводимости тепловой энергии (Rreg).

Например, предположим, что сопротивление равно 3,5 кв.см.*оС/Вт, а теплопроводность керамзитобетонного блока (λ) равна 0,3 Вт/м*оС. В этом случае, толщина стены рассчитывается путем перемножения данных значений. В итоге получаем: 3,5*0,3=1,05 метра.

Показатель сопротивления – напрямую зависит от климатических особенностей местности и типа будущего строения. Числовое значение данного показателя установлен СНиП 23-02-2002.

Обратите внимание! К расчетам оптимальной толщины стены следует подойти с особой ответственностью. Это поможет избежать расходов на дополнительное утепление стен, а в будущем — на отопление помещения.

Теплопроводность керамзитобетона в сравнении с другими строительными материалами

Пониженная теплопроводность керамзитобетонных стен с каждым годом побуждает все большее количество потенциальных покупателей приобрести именно этот вид строительного материала. Однако, говоря о керамзитобетоне, стоит обратить внимание на характеристики схожих по назначению стеновых материалов, какими являются: кирпич и изделия из ячеистых бетонов.

Обратите внимание на сравнительную таблицу.

Таблица 4: Показатели основных свойств стеновых материалов и рекомендуемая толщина стены.

Материал Теплопроводность Плотность Толщина стены

Кирпич керамический

0,5 1400-1700 Минимально-1,2

Блоки керамзитобетонные: теплопроводность

0,3-0,8 850-1800 От 1

Газобетонный блок

0,08-0,14 300-600 От 0,4

Пеноблок

0,14-0,23 600-1000 От 0,6

Как видно из таблицы, чемпионом коэффициента теплопроводности является газобетон. Однако при выборе материала не стоит забывать о том, что первенство в одной характеристике часто указывает на уязвимость в другой. А выбор всегда остается за потребителем.

Внешнее отличие керамзитобетонных блоков от других стеновых материалов

Декоративные керамзитобетонные блоки

Недостатки и достоинства материала

Керамзитобетон, как и любой другой материал, имеет свои плюсы и, разумеется, минусы.  Давайте разберемся, стоит ли, при строительстве дома, отдать предпочтение именно ему.

Положительные стороны Отрицательные стороны
Простота в обращении, высокая скорость укладки за счет размера.

Если сравнить керамзитобетонный блок с кирпичом, то укладка 1 такого блока эквивалентна 7-ми одинарным кирпичам.

При высоком уровне мастерства каменщика, 1м3 блока может быть уложен всего за 30 минут.

Пористая поверхность керамзитобетонных блоков, в большинстве своем, положительное качество. Однако оборотная сторона медали в этом имеет место быть.

Все дело в том, что при отрицательной температуре, капли воды, попадающие поры, кристаллизируется, тем самым нанося вред структуре блока.

Благодаря пористой поверхности, изделия из керамзитобетона имеют хорошее сцепление практически с любыми строительными материалами. Небольшой выбор размеров в сравнении, например, с газосиликатными блоками.

Производители керамзитобетона обычно предлагают 2 варианта: стандартный размер — 39*19*18 см, либо половинный, с толщиной в 9 либо 12 см.

Керамзитобетон входит в список негорючих материалов и экологически чистых. Не все крепежные материалы хорошо фиксируются в стене из керамзитобетонных блоков.
Привлекательная цена. Любая постройка из керамзитобетонных блоков обойдется значительно дешевле, чем из керамического кирпича, например. Это касается не только стоимости самого материала, но и услуг по возведению из него стен. Внешний вид стены из керамзитобетона стоит отнести к минусам. Дополнительная отделка необходима.
Высокий уровень звукоизоляции.

Износостойкость, сохранение качеств до 60-70 лет эксплуатации.

Устойчивость к усадке.

Появление трещин со временем практически исключено.

Повышенная хрупкость блоков. Наиболее часто это проявляется при транспортировке.
Изделия из керамзитобетона достаточно устойчивы к воздействию внешних факторов. Керамзитобетонные блоки боятся механического воздействия и деформации.
Теплопроводность керамзитобетонной стены позволяет уменьшить бюджет на утепление здания и создать максимально комфортные климатические условия в доме.

Обратите внимание! Также к недостаткам можно отнести факт распространения мелких частных производств без соблюдения технологий. Ведь производство действительно качественного блока, отвечающего всем требованиям ГОСТ, возможно только в заводских условиях и при наличии соответствующего оборудования.

Керамзитобетон обладает относительно небольшим весом, что значительно уменьшает нагрузку на фундамент и, соответственно, затраты на его устройство. Небольшая сложность в обработке. Керамзитобетонным блокам свойственно крошиться.

Стоит также отметить, что популярность материала позволяет приобрести его практически в любом даже маленьком городке, что существенно может сократить стоимость доставки.

Схема теплоизоляции цоколя с использованием керамзитобетонного блока

Готовое капитальное строение из керамзитобетонных блоков с отделкой

Если же вы решили попробовать силы в изготовлении керамзитоблоков самостоятельно, видео в этой статье поможет Вам.

Технические характеристики керамзитоблоков

Керамзитоблоки по своим характеристикам находятся между кирпичами и блоками из газобетона/пенобетона. От кирпича они позаимствовали морозостойкость и прочность. С газобетонными блоками они роднятся благодаря низкому уровню теплопроводности, большим размерам и, при этом, небольшому весу. Технологический процесс изготовления блоков из керамзитобетона заключается в добавлении керамзита фракции 5-10 мм в цементне. От фракции керамзита зависят такие характеристики, как прочность и энергосбережение.

Керамзитоблоки используют как при строительстве несущих стен, так и для возведения перегородок. Немаловажным фактором склоняющим к выбору керамзитобетонных блоков является то, что стоимость постройки дома из керамзитоблоков ниже по сравнению с аналогичными материалами. Причиной тому характеристики материала, позволяющие строить стены с меньшей толщиной, да и на фундаменте можно сэкономить, так как такие блоки гораздо легче своих конкурентов, а соответственно снижается и нагрузка на фундамент.

Технические характеристики керамзитоблоков

Керамзитобетонные блоки используются как в малоэтажном строительстве, так и при возведении высотных зданий, ведь их технические характеристики идельно подходят для этих целей. Из этих блоков можно построить здание высотой до 12 этажей. Вес блоков составляет от 10 до 23 кг. Долговечность керамзитоблоков может достигать 60 лет.

Существует два типа блоков, отличающихся размером и формой: стеновые и перегородочные. По стандартам их размеры: стеновые - 188х190х390 мм, перегородочные - 188х90х390 мм. Максимально допустимое отклонение от стандартных габаритов не должно быть больше 10-20 мм. Еще одна из характеристик данного материала - наличие пустот. Пустотелый керазитоблок имеет вертикальные отверстия, снижающие вес блока и повышающие его энергосберегающие качества. Полнотелые блоки более прочные, но и более тяжелые.

Плотность и прочность

Это наиболее важные характеристики керамзитоблоков, так как от плотности зависят энергосберегающие свойства, а от прочности – надежность стен здания.

Плотность керамзитоблока зависит от фракции и меняется в диапазоне от 500 до 1800 кг/м3.

Прочность блоков составляет В3,5–В20, при пересчете на величину статической нагрузки составляет от 35 до 250 кг/см2.

Морозостойкость и огнестойкость

По ГОСТу керамзитоблоки могут иметь несколько марок морозостойкости: F25, F35, F50 и F75. Марки керамзитоблоков указывают на количество циклов заморозки и оттаивания, которое может выдержать блок, полностью пропитанный водой, без потери прочности.

Керамзитоблоки имеют очень хорошую огнестойкость. Они имеют самый высокий класс пожарной безопасности – А1. Это означает, что при воздействии открытого огня стена не разрушается на протяжении 7–10 часов.

Плюсы и минусы керамзитоблоков

Керамзитобетонные блоки имеют плюсы и минусы, как и любой другой строительный материал. Давайте их рассмотрим:

Достоинства:

  1. Влагоустойчивый, что препятствует разрушению даже необработанных стен.
  2. Долговечность, даже в нашем климате.
  3. Высокие показатели прочности. Выдерживает статистическую нагрузку до 250 кг/см2.
  4. Небольшой вес, облегчающий процесс укладки.
  5. Низкая теплопроводность помогает сохранять комфортную температуру в любое время года.
  6. Огнестойкость и отсутствие токсичных продуктов горения.
  7. Хорошо сочетается с различными видами облицовочных материалов.
  8. Отличное соотношение цена-качество.
  9. Самый экологически чистым материал подобного типа, так как в состав входят только цемент, песок и керамзит.

Недостатки:

  1. Плохо переносят ударные и динамические нагрузки.
  2. При распиле образуют неровные края.

Плюсов у керамзитоблоков значительно больше, чем минусов, именно поэтому данный материал настолько популярен и имеет большинство положительных отзывов.

Сравним керамзитоблок с газоблоком и пеноблоком

Газоблоки быстро разрушаются под воздействием воды, чего нельзя сказать о керамзитобетонных блоках. А если же сравнивать пеноблок и керамзитоблок, то первый вдобавок к вышесказанному имеет еще и сильно нарушенную геометрию. Керамзитобетонные блоки, пеноблоки и газобетонные блоки по ряду характеристик достаточно близки. Керамзитоблоки поглощают меньше влаги, а так же превосходят по прочности своих конкурентов. Важной является еще одна характеристика - теплопроводность керамзитоблока, от которой зависит сохранение тепла в помещении.

Характеристики

Керамзитоблоки

Газоблоки

Пеноблоки

Прочность (кг/см2)

25-150

10-40

10-60

Плотность (кг/м3)

500-1800

200-900

450-900

Теплопроводность (Вт/мГрад)

0.15-0.45

0.10-0.30

0.10-0.40

Морозостойкость (циклов)

15-50

15-35

15-50

Водопоглощение (%)

50

95

85

Фотографии домов, построенных из керамзитобетонных блоков

Теплопроводность керамзитобетона (коэффициент у керамзитоблока)

Теплопроводность керамзитобетона – основное преимущество, которое делает строительный материал популярным в выполнении самых разных ремонтно-строительных работ. Керамзитобетон относится к категории легких бетонов, может производиться в формате смеси или блоков самых разных форм, размеров, плотности, пустотности, с определенными характеристиками и свойствами.

Керамзитобетон – это материал, для получения которого смешивают цемент, песок и керамзит в качестве наполнителя. Керамзит производят посредством обжига специальных сортов глины с грануляцией состава, на выходе получая круглые гранулы разной фракции (керамзитовый гравий). Именно благодаря наличию в составе керамзита определяются основные свойства керамзитобетона – тепло/звукоизоляция, малый вес, стойкость к воздействию внешних негативных факторов.

Керамзитобетон может очень существенно отличаться по теплопроводности, плотности, размеру и весу, марочной прочности. Каждый вид материала предполагает свои пропорции исходных компонентов – кварцевого песка, цемента, керамзитового гравия. Также могут отличаться фракции керамзита для производства разных марок материала. В составе некоторых бетонов применяют дробленую и даже песчаную фракцию керамзита, отсев с производства и т.д.

В состав материала могут вводиться различные синтетические добавки для улучшения свойств, ускорения процесса созревания бетона, водоудерживающего эффекта. Керамзитобетон сегодня производят многие предприятия, при выборе желательно обращать внимание не только на нужные технические характеристики, но и соблюдение технологии производства, качество самой продукции, наличие сертификатов.

Основные технические характеристики материала

Керамзитобетон может демонстрировать разные свойства, в зависимости от марки, состава, особенностей производства и т.д. Но основные показатели находятся в пределах, которые можно четко обозначить (и регулировать при необходимости разными методами).

Краткий обзор блоков из керамзитобетона

Керамзитобетон сегодня является очень популярным материалом, который используют в самых разных сферах строительства. Сравнительно невысокая цена, хорошее качество и высокий коэффициент теплопроводности керамзитобетона сделали его востребованным при проведении ряда работ.

Основное отличие керамзитовых блоков от любых других – наличие в составе керамзита, который придает материалу легкость, высокие тепло/звукоизоляционные свойства, прочность, стойкость. Также в состав вводят цемент, песок, воду, присадки для улучшения тех или иных технических характеристик. Марка керамзита и цемента оказывает влияние на марку готового материала, который может соответствовать требованиям марок от М100 до М500.

Главные показатели и свойства керамзитобетона:

  • Плотность

    – в пределах 400-2000 кг/м3.
  • Прочность

    – от В3.5, зависит от состава, технологии производства.
  • Теплопроводность

    – значение находится в диапазоне от 0.14 до 0.45 для сухого материала, в естественной влажности показатель может несущественно повышаться.
  • Морозостойкость

    – от 50 циклов замораживания/оттаивания, но для некоторых блоков производители устанавливают и все 200.
  • Водопоглощение

    – до 18% (в среднем 10-15%).
  • Паропроницаемость

    – не более 5% по СНиП.
  • Усадка

    – керамзитобетон не дает усадки вообще, поэтому значение равно 0.
  • Пожароопасность

    – минимальная, материал не горюч, выдерживает температуру высокую в течение 2 часов.

Многое зависит от того, как и с соблюдением каких правил производится керамзитобетон. Технология достаточно простая, но ее нужно четко придерживаться, строго соблюдая рецепт состава, правильно выбирая компоненты для производства.

Как производится керамзитобетон:

  1. Замешивают раствор, точно дозируя компоненты и соблюдая последовательность их введения в состав (цемент, песок, керамзит, вода).
  2. Далее формуют блоки – заливают смесь в формы, уплотняют для удаления воздушных полостей с применением вибростенда или пресса. Удаляют излишки раствора.
  3. Автоклавная обработка изделий – где в специальных бункерах на материал воздействуют высокое давление и горячий пар. Если автоклавная обработка отсутствует, блоки отправляют дозревать в специальном хранилище с оптимальным уровнем влажности/температуры.
  4. Распалубка: если изделия сушатся в естественных условиях, то через 3-4 дня, автоклавный керамзитобетон можно раньше извлекать. Далее материал выдерживают 28 дней для полного набора прочности.

Кроме состава и особенностей компонентов, на качество блоков также влияет обработка: автоклавные керамзитоблоки более прочные и стойкие, не так сильно впитывают воду, более стабильны. Вибропрессование обеспечивает более плотную структуру, что исключает возможность появления сколов, трещин и т.д.

Классификация керамзитобетона и область применения

Керамзитобетон может отличаться по марке, различным показателям, но главным свойством считают плотность. Именно плотность определяет уровень тепло/звукоизоляции материала, его прочностные характеристики (которые находятся в обратной пропорции: чем выше плотность, тем выше прочность и меньше изоляционные свойства, и наоборот).

Основные виды керамзитобетона и сфера использования:

  1. Теплоизоляционный керамзитобетон

    – плотностью от 350 до 600 кг/м3, прочность на сжатие в пределах 5-25 кг/см2. Применяется для теплоизоляции помещений общественного, жилого назначения. Для строительства внутренних перегородок и несущих стен практически не используется.
  2. Конструкционно-теплоизоляционный материал

    – плотность составляет 700-1200 кг/м3, прочность на сжатие достигает 100 кг/см2, морозостойкость в среднем находится на уровне 100 циклов. Применяется материал для создания однослойных стеновых панелей, крупных блоков для строительства малоэтажных зданий.
  3. Конструктивный керамзитобетон

    – материал демонстрирует плотность до 1800 кг/м3, прочность от 100 и до 500 кг/см2. Керамзитоблоки данного типа обладают высокой морозостойкостью (до 500 циклов), используются для строительства самых разных конструкций, но обеспечивают наименьший уровень теплоизоляции.

Таким образом, плотность и прочность находятся во взаимодействии с теплоизоляционными характеристиками и при выборе материала необходимо искать баланс и подбирать блоки с учетом основных требований.

Там, где важна прочность материала, выбирают наиболее плотный и используют дополнительный слой теплоизоляции, где нужно защитить конструкцию от холода, применяют блоки с малой плотностью.

Теплопроводность как одно из важнейших свойств материала для кладки стен

Теплопроводность – физическое свойство материала, которое отображает его способность отдавать тепло. Так, коэффициент теплопроводности указывает на скорость и объем передачи тепловой энергии от теплого предмета к более холодному за час на площади в 1 квадратный метр толщиной в 1 метр.

Показатели теплопроводности

Коэффициент теплопроводности керамзитоблока демонстрирует способность материала сохранять температуру внутри здания – чем значение выше/больше, тем быстрее здание или конструкция будут охлаждаться или нагреваться. На показатель теплопроводности влияет ряд важных факторов.

Что и как влияет на теплопроводность керамзитоблока:

  • Пористость материала – чем больше пор и в них воздуха, тем ниже коэффициент теплопроводности (и выше показатель теплоизоляции), а также меньше плотность, вес, прочность. На число и объем пор влияют объем керамзита и фракция наполнителя.
  • Величина блока, его пустотность – та же зависимость.
  • Исходный материал – соотношение компонентов в составе, марка керамзитобетона, точность соблюдения технологии.

В таблице указана прямая зависимость теплопроводности керамзитобетона от его плотности:

А тут рассмотрены пропорции материала для приготовления смеси/блоков с разными показателями плотности:

Керамзитоблоки также имеют способность контролировать в помещении уровень влажности: при его повышении блок впитывает влагу, а потом при иссушивании воздуха отдает ее обратно. Так в помещении всегда соблюдается оптимальный микроклимат.

Связь теплопроводности блоков и толщины стен будущего строения

Коэффициент теплопроводности обязательно учитывают в формуле при вычислении оптимальной нормативной толщины стен будущего здания. Для просчета значения нужно знать две величины – коэффициент теплопроводности материала (обозначается в формуле λ) и коэффициент сопротивления теплопередаче (устанавливается строительными правилами и нормами в соответствии с погодными условиями региона, обозначается как Rreg).

Формула выглядит так: δ = Rreg х λ.

Пример: для расчета оптимальной толщины стены здания, которое возводится в Москве или регионе, величину Rreg берут 3-3.1 (установлена в правилах). Стены можно строить из любых блоков, от их коэффициента теплопроводности зависит значение. Так, в примере можно взять блоки плотностью 600 кг/м3, теплопроводность по нормативу которых составляет 0.15 (и 0.20-0.25 для эксплуатации).

Получается:

δ = 3 х 0.15 = 0,45 м или δ = 3 х 0,22 = 0,66 м.

То есть, толщина стены при строительстве из указанных блоков должна быть в пределах 45-66 сантиметров. Опытными мастерами указывается в качестве оптимального значения толщина в 40-60 сантиметров для центральных регионов России, Москвы и регионов.

Правильный расчет толщины стен поможет верно определить необходимость утепления и подобрать материал, экономить на отоплении здания в будущем.

Теплопроводность в сравнении с другими строительными материалами

Керамзитобетон обладает пониженной теплопроводностью, которая зависит от марки и плотности материала. По показателю с керамзитобетоном могут сравниться газобетон и пенобетон (у них показатель чуть ниже), древесные материалы. Практически все ячеистые бетоны демонстрируют низкие значения теплопроводности, в связи с чем их очень часто используют в строительстве.

Ниже в таблице указаны показатели ключевых свойств разных материалов:

Тут можно посмотреть толщину стен из разных материалов, которые дают примерно одинаковый уровень теплопроводности:

Как видно, керамзитобетон демонстрирует оптимальные показатели теплопроводности, поэтому может успешно применяться для возведения разных типов зданий.

Недостатки и достоинства материала

Как и любой другой строительный материал, керамзитобетон обладает своими плюсами и минусами, которые обязательно нужно учитывать до начала строительства, в процессе проектирования и выполнения расчетов.

Главные преимущества керамзитобетона:

  • Простота в монтаже и высокая скорость кладки за счет больших размеров блоков и малого веса.
  • Экологичность и безопасность – керамзитобетон не горючий, производится на основе натуральных компонентов, поэтому не представляет опасности для здоровья и самочувствия людей.
  • Высокий уровень адгезии с любыми материалами за счет пористой поверхности керамзитобетона.
  • Разумная стоимость – строительство дома из керамзитобетона обходится значительно дешевле, чем из кирпича, к примеру.
  • Стойкость к разным воздействиям, высокая прочность.
  • Хороший уровень тепло/звукоизоляции.
  • Полное отсутствие усадки, что исключает вероятность возникновения трещин.
  • Понижение стоимости фундамента за счет уменьшения нагрузки на основание из-за малого веса керамзитобетона.
  • Низкое значение теплопроводности, что позволяет отказаться от дополнительного утепления и существенно экономить на отоплении.

Основные минусы керамзитобетона:

  • Из-за пористой поверхности блоки могут впитывать влагу, а потом при замерзании разрывать структуру, провоцируя распространение трещин и деформаций.
  • Сравнительно небольшой выбор типоразмеров – обычно представлены лишь стандартный величиной 39х19х18 сантиметров и половинный с толщиной 9/12 сантиметров.
  • Вероятные сложности с крепежами – нужно подбирать специальные элементы для прочного соединения.
  • Обязательное выполнение внутренней и внешней отделки, так как керамзитобетонные блоки выглядят неэстетично и требуют защиты от влаги, внешних воздействий.
  • Блоки хрупкие – часто при транспортировке разрушается большая часть материала, который боится деформаций и механических нагрузок, могут появиться сложности при обработке блока.

Теплопроводность керамзитобетона – показатель, который обязательно нужно учитывать при выборе материала и просчете оптимальной толщины стены, так как именно от него будут зависеть выбор системы отопления, необходимость в дополнительном утеплении, комфорт в эксплуатации и цифры в счетах за отопление.

Легкий заполнитель из вспененной глины LWA

Легкий изолирующий прочный заполнитель.

Благодаря своей пористой внутренней структуре керамзит Laterlite Expanded Clay легок (примерно от 320 кг / м³), обладает теплоизоляцией (коэффициент теплопроводности lambda l от 0,09 Вт / мК) и звукопоглощающим материалом. Керамическая «клинкерованная» внешняя оболочка, окружающая гранулы керамзита, делает их очень твердыми и устойчивыми к сжатию (до 12 Н / мм).

Чрезвычайно стабильный и долговечный

Керамзитовая глина Laterlite не гниет, не поражается паразитами (грибами, грызунами, насекомыми и т. Д.)), устойчив к кислотам, щелочам, растворителям и циклам замораживания-оттаивания.

Легкие заполнители из вспененной глины стабильны по размерам, не деформируются и сохраняют свои свойства неизменными с течением времени.

Это один из самых прочных строительных материалов: для всех практических целей эти агрегаты прослужат вечно.

Негорючие и огнестойкие

Керамзит

Laterlite состоит из 100% минеральных негорючих заполнителей (класс огнестойкости А1), не содержит органических соединений и производных, огнестойкий и безопасный, в том числе при наличии огня.Он обычно используется в огнеупорных материалах.

Натуральный материал для устойчивого строительства

Натуральное сырье, используемое в Laterlite Expanded Clay, его производственный процесс с уважением к окружающей среде и полное отсутствие вредных выбросов (даже при наличии огня), делают его идеальным для экологичного строительства, что подтверждено сертификатом ANAB-ICEA, итальянским Институт аккредитации.

Универсальность

Керамзит

Laterlite широко используется в строительстве, как сам по себе, так и в смеси со связующими (цемент, известь, смолы и т. Д.).).

Он широко используется в качестве компонента бетона, блоков и сборных элементов, в сельском хозяйстве и садоводстве, а также в инженерно-геологических и инфраструктурных работах.

Высокая пропускная способность

Из-за своей зернистой природы, которая состоит из плотной сети межкристаллитных пустот с высокой дренажной способностью, заполнители Laterlite Expanded Clay могут использоваться для создания легких дренажных слоев высокой прочности.

Маркировка CE

Laterlite Expanded Clay производится и испытывается в соответствии с международными эталонными стандартами и имеет маркировку CE для обозначения соответствия стандартам EN 13055-1, EN 14063-1 и EN 13055-2.

Laterlite Expanded Clay - чрезвычайно универсальный материал, который можно использовать как отдельно, так и при необходимости связать с различными типами связующих.

Узнайте больше на странице, посвященной методам нанесения.

В мешках на поддонах, в биг-бегах или навалом, или даже в силосных грузовиках, оборудованных для перекачки на месте (доступны только в определенных регионах), легкий керамзитовый заполнитель Laterlite может быть доставлен наиболее подходящим способом для нужд сайт или пользователь.

Дополнительную информацию можно найти на странице форм доставки и в документации по продукту.

Гранулированный керамзит латерита поставляется в полиэтиленовых мешках по 50 литров (20 пакетов / м 3 ) на поддонах в следующих количествах:

- 2-3: 60 пакетов на поддоне (3.0 м 3 )

- 3-8: 75 пакетов на поддоне (3,75 м 3 )

- 8-20: 75 пакетов на поддоне (3,75 м 3 )

Размер зерна 3-8 и 8-20 также доступен по запросу в поддонах, каждый вместимостью 35 мешков.

(PDF) Свойства наполнителей из вспученной глины

НЕКОТОРЫЕ КОНЕЧНЫЕ СВОЙСТВА наполнителей из вспученной глины

Bekir KARASU, Ömer ARIÖZ, Güray KAYA, Levent ENDOĞDULAR

Campus University of Science and Engineering,

, Университет Энадолу,

, Eskisehir, TURKIYE

Abstract

Поскольку стоимость стальной арматуры влияет на структуру и общую стоимость зданий, снижение веса компонентов в конструкциях на

важно для сокращения использования стальной арматуры.

Материалы, используемые для строительства, оказывают прямое влияние на общую стабильную массу здания

. Таким образом, строительные материалы должны обеспечивать оптимальные необходимые значения для тепло- и звукоизоляции здания

. В настоящее время стандарты и правила определяют желаемые значения

для теплоизоляции. И эти стандарты, выражая прямую связь между теплопроводностью строительных материалов

или их составных форм, обеспечивают тепловой комфорт

зданий.Все эти относительные значения изменяются в зависимости от конструкционных свойств материалов

и удельной теплоемкости. В качестве легкого заполнителя обычно используются керамзит, расширенный шлак с высокой топкой

, шлак из обожженного угля, вспученный перлит и пемза. В этом исследовании к региональным глинам A и B были добавлены альбитовые отходы флотации из Айдын Чине в Туркие и угольный порошок

из Кютахья в Турции. Затем партии были

либо мокрым, либо сухим помолом.Полученные суспензии вручную формуют в шарики

диаметром 0,5-10 мм, а затем спекают в режиме печи, включающем

при температурах 800-1300 ° C. Наконец, были определены водопоглощение и удельный объемный вес

спеченных заполнителей.

Ключевые слова: Керамзит, заполнитель, теплоизоляция, характеристикаAyrıca, yapı elemanlarının binanın ısıl yalıtımını

en optimal şekilde sağlaması gerekmektedir. Günümüzde, gerekli olan ısıl yalıtım değerleri

standartlar ve yönetmelikler ile ortaya konulmuştur. Bunlar, binalarda ısısal konforun

sağlanmasının, tamamıyla yapı elemanı ve / veya bileşeni şeklinde kullanılan malzemenin ısıl

iletkenlik değerleri ilekili doğrudan. Söz konusu değerler

malzemenin yapısal özelliğine ve özgül ısı kapasitesine bağlı olarak değişir.Хафиф договорга

оларак, генлешмиш кил, генлешмиш юксек фырин цюруфу, якылмиш кемюрден элде эдилен цюруф,

genleştirilmiş перлит ве помза агрегалари бийанійгим. Бу çalışmada

yerel olarak бол miktarda bulunan ве Б killerine Farklı oranlarda Айдын Чине bölgesi Альбит

flotasyon atığı, Кютахья çevresinden Elde эдилен Komur tozu katkıları yapılmış ве yığın Яс

йада куру öğütme işlemine таби tutulmuştur. Elde edilen çamur el ile 0,5-10 мм boyutlarında

bilye şekline getirilip 800-1300 oC arasında farklı sıcaklıklarda pişirilmiştir.Pişmiş nihai

agregaların su emme ve yoğunluk değerleri belirlenmiş ве inşaat sektöründe kullanım

potansiyelleri araştırılmıştır.

Анахтар Келимелер: Genleştirilmiş kil, Agrega, Isıl yalıtım, Karakterizasyon

(PDF) Влага и теплопроводность легких блочных стен

При выполнении кладки, изоляции и

часто возникают сложные климатические условия (дождь, холод и т. Д.)

отделочные работы. Целью данного исследования было определить, как низкие температура и влажность во время строительства

повлияют на тепловое состояние стен на протяжении всего срока эксплуатации здания.Общеизвестно, что влага в материале стен непосредственно снижает коэффициент теплопередачи.

необходимо для определения возможных условий конденсации и пересыхания влаги в стенах. Целью

этого исследования было также определить, могут ли такие стены использоваться только с хорошо влажной стекловатой

(коэффициент влагостойкости μ = 1.0) или также с плотным полистиролом (μ = 60).

Для изучения технических тепловых характеристик стены, построенной в начале зимы, необходимо измерить реальную теплопроводность стены и относительную влажность воздуха

, а также температуру поперечного сечения различных слоев

. со стены.Для изучения технических характеристик стены

доступны самые разные методы. Де Грасиа и др. (2011) [3] построили различные конструкции тепловой пограничной стены

и традиционные конструкции кубов стены (2,4 x 2,4 x 2,4 м) для исследования таких свойств. Они

сравнили тепловые характеристики стен в разных кубах и после достижения стабильной температуры

рассчитали коэффициент теплопередачи стен (цифры u).

Skujans et al (2007) [5, 6] изучали теплопроводность путем измерения тепла стенок многослойных пористых гипсовых плит

с помощью пластины для измерения теплового потока и температуры в разных слоях с помощью термопар

. Также измерялась температура воздуха и температура в разных слоях стены

. Теплопроводность рассчитывалась по измерениям, полученным от стены. Стена

была протестирована этим методом в лаборатории и на открытом воздухе.Различия результатов составили

в пределах погрешности.

Четыре различных испытательных стены были встроены в оконные проемы лаборатории, чтобы исследовать техническое состояние стен

. Лабораторное помещение составляло одну сторону стены, а другую сторону

подвергали воздействию внешней среды. Путем одновременного измерения теплофизических характеристик стены

(температура и влажность на поверхности стены и в различных слоях, тепловой поток

через стену) сопоставимые данные теплопроводности были получены для четырех различных конструкций стен

.

Новый краткосрочный метод позволяет определить коэффициент диффузии водяного пара

в зависимости от функции относительной влажности в течение одного эксперимента. Основная идея метода состоит в том, что

подвергает образец материала различным климатическим условиям, касающимся относительной влажности, и

контролирует уровень влажности в образце, тогда как эксперимент проводится в изотермических условиях

. Основное отличие предлагаемого метода от всех других методов определения

коэффициента диффузии водяного пара состоит в том, что он обеспечивает относительный уровень влажности в анализируемом образце

.Это значительно упрощает процедуру оценки данных, поскольку методы обратного анализа

, известные в задачах теплопередачи и влагопереноса, могут использоваться только с небольшими модификациями

. Следует учитывать, что данный метод был опробован только на одном материале [17].

В заключение, термодиффузия не имеет значения для построения физических приложений, оставляя давление пара

в качестве единственного значимого транспортного потенциала для диффузии водяного пара в пористых материалах

[18] [19].

Также бетонные блоки (CMU) используются для строительства теплоэффективных стен. Доступны блоки CMU

в различных конфигурациях. Некоторые из них просты и состоят только из одного материала, в то время как другие имеют

путей блокировки из конструкционных и изоляционных материалов. В этом эксперименте использовались простые двухъядерные блоки CMU

с полыми блоками (распространены в США) и более совершенные многоядерные блоки CMU с блокировкой

(распространенные в Европе).В результате использование легких бетонов улучшило тепловые характеристики стен

больше, чем использование сложных изоляционных конструкций [15].

2-я Международная конференция по инновационным материалам, конструкциям и технологиям IOP Publishing

IOP Conf. Серия: Материаловедение и инженерия 96 (2015) 012033 DOI: 10.1088 / 1757-899X / 96/1/012033

Liapor

Легкие и штукатурные растворы

Liapor идеально подходят для создания однородных кладочных конструкций с отличными теплоизоляционными свойствами.Легкий раствор обеспечивает надежную фиксацию кирпичных блоков Liapor. Штукатурные растворы Liapor используются для завершения внешнего вида. Как одно- или многослойные системы, они удовлетворяют множеству различных требований, связанных со строительством, но при этом оставляют место для свободы индивидуального дизайна.

Идеально подходит для кирпичной кладки из лиапора
Легкие кладочные растворы

Liapor с зерном керамзита отличаются низким насыпным весом в сухом состоянии и хорошими теплоизоляционными свойствами.Они улучшают теплоизоляцию стены в целом до 30 процентов по сравнению с обычными растворами. В результате этот легкий керамзитовый раствор идеально подходит для теплоизоляции наружных кладочных конструкций, в частности, при использовании кладочных блоков Лиапор. Он предотвращает разницу в теплоизоляции между блоком и стыком, создает однородную структуру кладки и обеспечивает идеальную основу для внутренней и внешней штукатурки. Легкие стеновые растворы Liapor обычно содержат гранулы Liapor с размером зерна до четырех миллиметров и измельченный песок Liapor или даже пеностекло Liaver.Легкий раствор Liapor поставляется в виде сухого раствора из силоса, в мешках или в виде свежего раствора из контейнера.

Оптимизирован для оснований с превосходными теплоизоляционными свойствами
Штукатурные растворы

Лиапор рекомендуются для последующего оштукатуривания всех стеновых конструкций. Они доступны как одно- или многослойные системы и идеально подходят для использования как в помещении, так и на открытом воздухе. Готовые минеральные растворы, поставляемые с завода, защищают от воздействия погодных условий, улучшают тепловую, шумовую, огнестойкость и защиту от влаги, а также предлагают практически неограниченные конструктивные возможности при использовании как для стен из липора высокой плотности, так и без мелких частиц.Поскольку поверхность штукатурки термически связана с основанием, происходит теплообмен, который эффективно предотвращает образование водорослей и плесени. Ассортимент включает легкую штукатурку типа 1 с насыпной плотностью в сухом состоянии менее 1300 кг / м³, легкую штукатурку типа 2 с насыпной плотностью от 600 до 1100 кг / м³ и теплоизоляционные штукатурные системы с теплопроводностью от 0,055 до 0,14. Вт / мК. Легкие штукатурки типа II оптимизированы для обеспечения максимальной эластичности и усадки.Исследования показали, что эти штукатурки предлагают отличное соотношение модуля упругости (гипс) / модуля упругости (подложка), значительно меньшего, чем 1, и поэтому они оптимизированы для использования с подложками, обладающими высокими теплоизоляционными свойствами.

Физические свойства строительных блоков из заполнителя конопли и цементного вяжущего, произведенных на производственной линии из вспененной глины (вибропрессование)

[1] А.Эврард, А. Де Херде, Гигротермические характеристики стенок извести и конопли J Build Phys, 34 (2010) 5–25.

DOI: 10.1177 / 17442555730

[2] Р.Беван, Т. Вулли, Строительство из конопли извести: Руководство по строительству с использованием композиций из конопли извести. BRE Books, Гарстон, (2008).

[3] Ф.Колле, С. Прето, Экспериментальное исследование способности удерживать влагу у напыленного конопляного бетона. Constr Build Mater. 36 (2012) 58–65.

DOI: 10.1016 / j.conbuildmat.2012.04.139

[4] П.Дейли, П. Рончетти, Т. Вулли, Биокомпозит из конопли и извести в качестве строительного материала Агентство по охране окружающей среды, Ирландия (2010).

[5] П.Гле, Э. Гурдон, Л. Арно, Акустические свойства материалов из растительных частиц с несколькими масштабами пористости. Appl Acoust. 72 (2011) 249–259.

DOI: 10.1016 / j.apacoust.2010.11.003

[6] Л.Арно, Э. Гурли, Экспериментальное исследование параметров, влияющих на механические свойства конопляных бетонов, Constr Build Mater 28 (2012) 50-56.

DOI: 10.1016 / j.conbuildmat.2011.07.052

[7] Гл.Гросс, П. Уокер, Стеллажные характеристики деревянных каркасных конструкций и стен из пеньковой извести, Constr Build Mater, 66 (2014) 429–435.

DOI: 10.1016 / j.conbuildmat.2014.05.054

[8] Л.Курар, А. Даримон, А. Луи, Л. Мишель, Минерализация биоматериалов: влияние на свойства цементной смеси. Вестник Ясского политехнического института, Строительство. 54 (2011) 1-14.

[9] Л.Ф. Ма, Х. Ямаути, Р.О. Пулидо, Ю. Тамура, Х. Сасаки, С. Каваи, Производство цементно-стружечных плит из дерева и других лигноцеллюлозных материалов: взаимосвязь между гидратацией цемента и механическими свойствами цементно-стружечных плит. Древесно-цементные композиты в Азиатско-Тихоокеанском регионе. 13-23 (2010).

DOI: 10.3403 / bsen634

[10] Н.Штевулова, Л. Кидалова, Я. Цигасова, Я. Юнак, А. Сичакова, Э. Терпакова, Легкие композиты, содержащие стебли конопли. Разработка процедур. 65 (2013) 69–74.

DOI: 10.1016 / j.proeng.2013.09.013

[11] М.Bołtryk, E. Pawluczuk, Свойства легкого цементного композита с экологическим органическим наполнителем. Constr Build Mater. 51 (2014) 97–105.

DOI: 10.1016 / j.conbuildmat.2013.10.065

[12] ГРАММ.Балчюнас, И. Пундиене, Л. Лекунайте-Лукошюне, С. Вейелис, А. Корякинс, Влияние минерализации заполнителя костры конопли на физико-механические свойства и структуру композита с вяжущим материалом. Ind. Crops Prod. 77 (2015).

DOI: 10.1016 / j.indcrop.2015.09.011

Обожженные глиняные материалы - теплоизоляция

Основная информация находится в главе 8.

Обожженная глина в виде кирпича в основном является конструкционным материалом и обладает высокой теплопроводностью. Однако можно добавлять в глину вещества, которые выгорают при обжиге и оставляют в конструкции воздушные карманы. Более легкий продукт можно найти в форме плиты или блока.

Глина также может быть расширена до легких гранул керамзита для использования в качестве рыхлой засыпки или заливки с цементом для формирования блоков или плит. Подвергая легкий керамзит еще более высоким температурам, легкие воздушные гранулы объединяются в твердую массу, из которой можно формировать блоки, известные как Zytan.Блоки этого типа не производятся из-за высоких энергозатрат при производстве.

Все изделия из обожженной глины химически неактивны. В условиях микроклимата в помещении с этими изделиями проблем не возникает.

Некоторые виды кирпичных изделий являются хорошими регуляторами влажности, чем более развита микропористая структура, тем лучше. Низкопробный

Таблица 14.6 Климатические качества изделий из обожженной глины

Материал

Области использования

Кирпич керамический и обожженный1

Тепловая буферизация, звукоизоляция

Кирпич слабой и средней обжиговой1

Тепловая буферизация, буферизация влаги, звукоизоляция

Кирпич с высоким содержанием извести (15-20% извести) 1

Тепловая буферизация, буферизация влаги, звукоизоляция

Кирпич пористый

Теплоизоляция, термоизоляция, буферизация влаги, звукоизоляция

Гранулы керамзитобетонные, сыпучие

Теплоизоляция, капиллярный барьер

Зитанский блок

Теплоизоляция, звукоизоляция

1 Обсуждено в главе 13, Конструкционные материалы.

1 Обсуждается в главе 13, Конструкционные материалы.

14.10

Пористый кирпич с известью, уравновешивающий влажность в ванной. Гидравлический известковый раствор используется для улучшения возможности повторного использования кирпича. Гайя Листа, 1996.

14,10

Пористый кирпич с известью, уравновешивающий влажность в ванной. Гидравлический известковый раствор используется для улучшения возможности повторного использования кирпича. Гайя Листа, 1996.

Кирпич

и кирпич с высоким содержанием извести дают наилучшие результаты (Рисунки 14.10 и 14.11). Из-за того, что при производстве требуется большое количество энергии, все изделия из обожженной глины следует утилизировать, предпочтительно путем повторного использования в их первоначальном неповрежденном виде. Изделия из цветной и глазурованной глины могут содержать пигменты тяжелых металлов, что может вызвать проблемы при окончательной утилизации.

Легкие кирпичи и блоки обжигают при температуре 1000 ° C и выше. Органические ингредиенты (опилки, кусочки пробки и т. Д.) Сжигаются, оставляя внутреннюю структуру с изолированными воздушными отверстиями.В одном конкретном продукте используются гранулы полистирола. Во время обжига гранулы полистирола испаряются в виде воды, углекислого газа и

14,11

Внешний вид ванной комнаты показан на Рисунке 14.1C. И стены, и пол состоят только из минеральных материалов, чтобы предотвратить повреждение от влаги. Перлит используется в качестве теплоизоляции. Гайя Листа, 1996.

14,11

Внешний вид ванной комнаты показан на Рисунке 14.1C. И стены, и пол состоят только из минеральных материалов, чтобы предотвратить повреждение от влаги.Перлит используется в качестве теплоизоляции. Гайя Листа, 1996.

стирол, последний считается серьезным токсином. Готовый продукт, вероятно, не содержит полистирола.

Может быть добавлен изолирующий заполнитель, такой как ископаемая мука, и после обжига блоки имеют относительно высокий показатель теплоизоляции.

Продолжить чтение здесь: Изделия из обожженной глины с ископаемой мукой в ​​качестве теплоизоляции

Была ли эта статья полезной?

Теплопроводность - выбранные материалы и газы

Теплопроводность - это свойство материала, которое описывает способность проводить тепло.Теплопроводность может быть определена как

«количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади - из-за градиента единичной температуры в условиях устойчивого состояния»

Теплопроводность единицы - [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

9035 9038 903 9038 903 (газ) 1) Асбест 1) Balsa Кирпич кирпичный Кирпич общий ) Коричневый Бронзовый 0.58 Углерод 16,3 9035 9035 9035 9035 9035 9035 9035 9035 содержание) 4 - 0,7

9038 9038

58357

.58 9038 , сухой 9035

Marble

159

9035 9038

0,1 - 0,22 9038

сырой

9035 9035 9035 9035

9038

905 материя

0.07

9038 9038

17
Теплопроводность
- k -
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)

0 C


(257 o F)
225 o C
(437 o F)
Ацетали 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
0,018
Акрил 0,2 0,0333 0,0398
Воздух, высота 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 1) 0,744
0,166
Асбестоцемент 1) 2,07
Асбест в сыпучей упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 - 0,48
Бензол 0,16
Бериллий
Висмут 8,1 8,1 Висмут (газ) 0,02
Весы котла 1,2 - 3,5
Бор 25
Латунь
10 - 0,20
Кирпич плотный 1,31
Кирпич противопожарный 0,47
Кирпич изоляционный
9035 0,15 0,6 -1,0
Кирпичная кладка, плотная 1,6
Бром (газ) 0,004
Бронзовый
Сливочное масло (влажность 15%) 0,20
Кадмий
Силикат кальция 9038 9038
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун из регенерированной древесины Хлопок.23

Ацетат целлюлозы, формованный, лист

0,17 - 0,33
Нитрат целлюлозы, целлулоид 0,12 - 0,21 0,12 - 0,21 Цемент
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Полиэфир хлорированный 0,13
Никель Сталь
Хром
Хромоксид 0,42
Глина от сухой до влажной 0.15 - 1,8
Глина, насыщенная 0,6 - 2,5
Уголь 0,2
0,54
Кокс 0,184
Бетон легкий 0,1 - 0,3
Бетон средний 0357
Бетон, плотный 1,0 - 1,8
Бетон, камень 1,7
Константан
Кориан (керамический наполнитель) 1.06
Пробковая плита 0,043
Пробка повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Хлопковая вата 0,029

9035 Хлопок Углеродистая сталь 9038

Хлопок

0,029
Мельхиор 30% 30
Алмаз 1000
0 Диатомовая земля (Sil-o-cel) 06
Диатомит 0,12
Дуралий
Земля, сухая 1,5 11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидная смола 0,35
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Древесноволокнистая плита 0,2
Кирпич огнеупорный глиняный 500 3 Фтор (газ) 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло, стекло 0,18
Стекло, жемчуг, насыщенный 0,76
Стекло, окно 0.96
Стекло-шерстяная изоляция 0,04
Глицерин 0,28
9038 9038 9038 903
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Твердая древесина (дуб, клен ...) 0,16
Hastelloy C 12
Гелий (газ)
12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
газ сероводород газ013
Лед (0 o C, 32 o F) 2,18
Инконель 15
9038
Изоляционные материалы 0,035 - 0,16
Йод 0,44
Иридий 147

Капок-изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088

0,0088 0,14
Известняк 1,26 - 1,33
Литий
Магнезиальная изоляция (85%) 07
Магнезит 4,15
Магний
Магниевый сплав 70-145
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024 газ 0,024 Оксид азота
Нейлон 6, Нейлон 6/6 0,25
Масло для машинной смазки SAE 50 0,15
Оливковое масло 17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05 9038 Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Фенолформальдегидные формовочные смеси 0,13 - 0,25 110353

Шаг 0,13
Карьерный уголь 0.24
Штукатурка светлая 0,2
Штукатурка металлическая 0,47
Штукатурка песочная 0,71
Пластилин 0,65 - 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 - 0,51
Полиизопреновый каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат
Полистирол расширенный 0,03
Полистирол 0.043
Пенополиуретан 0,03
Фарфор 1,5
Калий
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1.005
Кварц минеральный 3
Радон (газ) 0,0033 Рений
Родий
Порода, твердая 2-7
Порода, порода 4.5 - 2,5
Изоляция из минеральной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 - 0,25
Песок влажный 0,25 - 2
Песок насыщенный 2-4
Опилки 0,08
Селен
Овечья шерсть 0,039
Кремнеземный аэрогель 02
Силиконовая литьевая смола 0,15 - 0,32
Карбид кремния 120
Силиконовое масло
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 - 0,25
Натрий
Хвойные породы (пихта, сосна ...) 0,12
Почва, глина 1,1 0,15 - 2
Грунт насыщенный 0,6 - 4

Припой 50-50

50 50

Пар, насыщенный

0,0184
Пар низкого давления 0,0188
Сталь
Сталь, нержавеющая
Изоляция из соломенных плит, сжатая 0,09
Пенополистирол 0.033
Двуокись серы (газ) 0,0086
Сера кристаллическая 0,2
Сахар
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха
Древесина, ясень 0,16
Древесина береза ​​ 0,14
Древесина лиственница 0,12
Древесина дубовая 0,17
Древесина смоляная 0,14
Древесина осина 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15 9038 0,15
Олово
Титан
Вольфрам 9038 9038 9038 9038 Uran021
Вакуум 0
Гранулы вермикулита 0,065 9035 0,606
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, белая сосна 0,12
Древесина поперек волокон, бальза 0,0 Древесина поперек волокон, сосна желтая, древесина 0,147
Дерево, дуб 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 - 0,15
Ксенон (газ) 0,0051
Цинк
цинк
9 плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример - кондуктивная теплопередача через алюминиевый бак по сравнению с баком из нержавеющей стали

Кондуктивная теплопередача через стенку ванны может быть рассчитана как

q = (k / s) A dT (1)

или, альтернативно,

q / A = (к / с) dT

, где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности (м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , БТЕ / (ч фут 2 ))

k = теплопроводность ( Вт / мК, БТЕ / (ч фут ° F) )

dT = t 1 - t 2 = разница температур ( o C, o F)

с = толщина стены (м, фут)
9000 5

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

s = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 - t 2 = разница температур ( o C, o F)

Примечание! - общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм - разница температур 80
o C

Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).

Опубликовано в категории: Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.