3 д принтера – Категория 3D-печать — все что нужно знать о 3d-печати на 3d-принтере — сообщество владельцев 3D-принтеров 3DToday

Содержание

Что такое 3D печать и как работает 3D принтер?

С начала нового тысячелетия понятие «3D» прочно вошло в нашу повседневную жизнь. В первую очередь, мы связываем его с киноискусством, фотографией или мультипликацией. Но едва ли сейчас найдётся человек, который хотя бы раз в жизни не слышал о такой новинке, как 3D-печать.

Что же это такое и какие новые возможности в творчестве, науке, технике и повседневной жизни несут нам технологии трехмерной печати, мы и попытаемся разобраться в статье, приведенной ниже.

Но сначала немного истории. Хоть и много стали говорить о 3D печати только последние несколько лет, на самом деле эта технология существует уже достаточно давно. В 1984 году компания Charles Hull разработала технологию трёхмерной печати для воспроизведения объектов с использованием цифровых данных, а двумя годами позже дала название и запатентовала технику стереолитографии.

Тогда же эта компания разработала и создала первый промышленный 3D принтер. Впоследствии эстафету приняла компания 3D Systems, разработавшая в 1988 году модель принтера для 3Д печати в домашних условиях SLA – 250.

В том же году компанией Scott Grump было изобретено моделирование плавлеными осаждениями. После нескольких лет относительного затишья, в 1991 году компания Helisys разрабатывает и выпускает на рынок технологию для производства многослойных объектов, а через год, в 1992, в компании DTM выходит в свет первая система селективного лазерного спаивания.

Затем, в 1993 году основывается компания Solidscape, которая и приступает уже к серийному производству принтеров на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, причём при относительно небольших затратах.

Тогда же Массачусетский университет патентует технологию трёхмерной печати, подобную струйной технологии обычных 2D принтеров. Но, пожалуй, пик развития и популярности 3D печати всё же пришёлся на новый, 21 век.

В 2005 году появился первый 3D принтер, способный печатать в цвете, это детище компании Z Corp под названием Spectrum Z510, а буквально через два года появился первый принтер, способный воспроизводить 50% собственных комплектующих.

В настоящее время круг возможностей и сфер применения 3Д печати постоянно растёт. Этим технологиям оказалось подвластно всё — от кровеносных сосудов до коралловых рифов и мебели. Впрочем, о сферах применения данных технологий мы поговорим чуть позже.

Итак, что же представляет из себя печать на 3d принтере?

Вкратце — это построение реального объекта по созданному на компьютере образцу 3D модели. Затем цифровая трёхмерная модель сохраняется в формате STL-файла, после чего 3D принтер, на который выводится файл для печати, формирует реальное изделие.

Сам процесс печати – это ряд повторяющихся циклов, связанных с созданием трёхмерных моделей, нанесением на рабочий стол (элеватор) принтера слоя расходных материалов, перемещением рабочего стола вниз на уровень готового слоя и удалением с поверхности стола отходов.

Циклы непрерывно следуют один за другим: на первый слой материала наносится следующий, элеватор снова опускается и так до тех пор, пока на рабочем столе не окажется готовое изделие.

Как работает 3D принтер?

Применение трехмерной печати – это серьезная альтернатива традиционным методам прототипирования и мелкосерийному производству. Трёхмерный, или 3д-принтер, в отличие от обычного, который выводит двухмерные рисунки, фотографии и т. д. на бумагу, даёт возможность выводить объёмную информацию, то есть создавать трёхмерные физические объекты.

На данный момент оборудование данного класса может работать с фотополимерными смолами, различными видами пластиковой нити, керамическим порошком и металлоглиной.

Что такое 3d принтер?

В основу принципа работы 3d принтера заложен принцип постепенного (послойного) создания твердой модели, которая как бы «выращивается» из определённого материала, о котором будет сказано немного позже. Преимущества 3D печати перед привычными, ручными способами построения моделей — высокая скорость, простота и относительно небольшая стоимость.

Например, для создания 3D модели или какой-либо детали вручную может понадобиться довольно много времени — от нескольких дней до месяцев. Ведь сюда входит не только сам процесс изготовления, но и предварительные работы — чертежи и схемы будущего изделия, которые всё равно не дают полного видения окончательного результата.

В итоге значительно возрастают расходы на разработку, увеличивается срок от разработки изделия до его серийного производства.

3D технологии же позволяют полностью исключить ручной труд и необходимость делать чертежи и расчёты на бумаге — ведь программа позволяет увидеть модель во всех ракурсах уже на экране, и устранить выявленные недостатки не в процессе создания, как это бывает при ручном изготовлении, а непосредственно при разработке и создать модель за несколько часов.

При этом возможность ошибок, присущих ручной работе, практически исключается.

Что такое 3d принтер: видео

Существуют различные технологии трёхмерной печати. Разница между ними заключается в способе наложения слоёв изделия. Рассмотрим основные из них.

Наиболее распространенными являются SLS (селективное лазерное сплетение), НРМ (наложение слоев расплавленных материалов) и SLA (стереолитиография).

Наиболее широкое распространение благодаря высокой скорости построения объектов получила технология стереолитографии или SLA.

Технология SLA

Технология работает так: лазерный луч направляется на фотополимер, после чего материал затвердевает.

В качестве фотополимера используется полупрозрачный материал, который деформируется под действием атмосферной влаги.

После отвердевания он легко поддаётся склеиванию, механической обработке и окрашиванию. Рабочий стол (элеватор) находится в ёмкости с фотополимером. После прохождения через полимер лазерного луча и отвердения слоя рабочая поверхность стола смещается вниз.

Технология SLS

Спекание порошковых реагентов под действием лазерного луча – оно же SLS — единственная технология 3D печати, которая применяется при изготовлении форм, как для металлического, так и пластмассового литья.

Пластмассовые модели обладают отличными механическими качествами, благодаря которым они могут использоваться для изготовления полнофункциональных изделий. В SLS технологии используются материалы, близкие по свойствам к маркам конечного продукта: керамика, порошковый пластик, металл.

Устройство 3d принтера выглядит следующим образом: порошковые вещества наносятся на поверхность элеватора и спекаются под действием лазерного луча в твёрдый слой, соответствующий параметрам модели и определяющий её форму.

Технология DLP

Технология DLP – новичок на рынке трехмерной печати. Стереолитографические печатные аппараты сегодня позиционируются, как основная альтернатива FDM оборудованию. Принтеры данного типа используют технологию цифровой обработки светом. Многие задаются вопросом, чем печатает 3d принтер данного образца?

Вместо пластиковой нити и нагревающей головки для создания трехмерных фигур используются фотополимерные смолы и DLP-проектор.

Ниже вы можете увидеть, как работает 3d принтер видео:

Впервые услышав про DLP 3d принтер, что это такое – вполне резонный вопрос. Несмотря на замысловатое название, устройство почти не отличается от других настольных печатных аппаратов. К слову, его разработчики, в лице компании
QSQM Technology Corporation, уже запустили в серию первые образцы высокотехнологичного оборудования. Выглядит оно следующим образом:

Технология EBM

Стоит отметить, технологии SLS/DMLS – далеко не единственные в области печати металлом. В настоящее время для создания металлических трехмерных объектов широко используется электронно-лучевая плавка. Лабораторные исследования показали, что использование металлической проволоки для послойного наплавления при изготовлении высокоточных деталей малоэффективно, поэтому инженеры разработали специальный материал – металлоглину.

Металлическая глина, использующаяся в качестве чернил во время электронно-лучевой плавки изготавливается из смеси органического клея, металлической стружки и определенного количества воды. Для того чтобы превратить чернило в твердый объект, его нужно нагреть до температуры, при которой клей и вода выгорят, а стружка сплавится между собой в монолит.

EBM 3d принтер: как работает

Примечательно, что данный принцип также используется при работе с SLS принтерами. Но в отличие от них, EBM-аппараты генерируют для плавки металлоглины направленные электронные импульсы вместо лазерного луча. Нужно сказать, что данный метод обеспечивает высокое качество печати и отличную прорисовку мелких деталей.

На сегодняшний день продаются только промышленные принтеры, использующие EBM технологию. Вот как выглядит один из них:

На видео, представленном ниже, наглядно продемонстрированы возможности 3d принтера, приспособленного для электронно-лучевой плавки:

Технология НРМ (FDM) HPM

Даёт возможность создавать не только модели, но и конечные детали из стандартных, конструкционных и высокоэффективных термопластиков. Это единственная технология, использующая термопластики производственного класса, обеспечивающие не имеющую аналогов механическую, термическую и химическую прочность деталей.

Печать по технологии НРМ выгодно отличается чистотой, простотой использования и пригодностью для применения в офисе. Детали из термопластика устойчивы к высоким температурам, механическим нагрузкам, различным химическим реагентам, влажной или сухой среде.

Растворимые вспомогательные материалы позволяют создавать сложные многоуровневые формы, полости и отверстия, которые было бы проблематично получить обычными методами. 3D-принтеры, действующие по технологии НРМ, создают детали слой за слоем, разогревая материал до полужидкого состояния и выдавливая его в соответствии созданными на компьютере путями.

Для печати по технологии НРМ используется два различных материала — из одного (основного) будет состоять готовая деталь, и вспомогательного, который используется для поддержки. Нити обоих материалов подаются из отсеков 3D-принтера в печатающую головку, которая передвигается зависимости от изменения координат X и Y, и наплавляет материал, создавая текущий слой, пока основание не переместится вниз и не начнется следующий слой.

Когда 3D-принтер завершит создание детали, остаётся отделить вспомогательный материал механически, или растворить его моющим средством, после чего изделие готово к использованию.

Интересно, что в наши дни популярностью пользуются не только автоматические настольные HPM принтеры, но и приспособления для ручной печати. Причем, правильно было бы назвать их не печатными устройствами, а ручками для рисования трехмерных объектов.

Ручки сделаны по той же схеме, что и принтеры, использующие технологию послойного наплавления. Пластиковая нить подается в ручку, где плавится до нужной консистенции и тут же выдавливается через миниатюрное сопло! При должной сноровке получаются вот такие оригинальные декоративные фигурки:

Ну и конечно, так же, как и технологии, отличаются друг от друга и сами принтеры. Если у вас принтер, работающий по SLA, то технологию SLS на нём применить будет невозможно, т. е. каждый принтер создан только под определённую технологию печати.

Цветная 3D-печать

Данная технология единственная в своем роде, которая позволяет получать объекты во всем доступном диапазоне оттенков. Примечательно, что окрашивание изделий происходит непосредственно во время их изготовления. С ее помощью получаются фотореалистичные объекты. Это и вызывает неподдельный интерес к ней со стороны дизайнеров.

Зачастую в качестве исходного материала применяют порошок, созданный на основе гипса. Щетки и ролики формируют не очень толстый слой расходника. Дальше с помощью подвижной головки на необходимые участки наносятся микрокапли клееобразного вещества (перед этим его окрашивают в нужный цвет). Оно напоминает по своему составу цианокрилат. Послойно создается готовый разноцветный объект. Финальная обработка изделия цианоакрилатом обеспечивает ему блеск и жесткость.

Промышленные и настольные цветные 3D-принтеры

Современный рынок предлагает различные многоцветные 3D-принтеры. С их помощью создаются разноцветные объекты в домашних условиях. Большинство агрегатов предназначено для профессионального использования.

Профессиональная цветная печать на 3D-принтере осуществляется с помощью:

1. Линейки Zрrintеr от известной торговой марки 3D Sуstems. Эти устройства могут создавать габаритные разноцветные объекты. Снабжаются 5-ю картриджами и системой автоматической загрузки порошка. Техника практически на 100% автоматизирована, поэтому настройка или контроль процесса печати не обязателен. Весят модели около 340 килограмм. Стоимость в пределах 90-130 тысяч долларов.

2. Полноцветный 3D-принтер Мсor Iris. Разноцветные изделия создаются путем склеивания отдельных бумажных клочков. Данный агрегат от Мсоr Тесhnologies Ltd создает объемные фотореалистичные модели с неплохими показателями прочности. Может генерировать до миллиона цветов. Стоит 15 тысяч долларов.

Настольные модели для домашнего использования:

1. Цветной 3D-принтер 3D Тоuch. Данный агрегат работает по технологии FDМ. Модель может снабжаться одной, двумя или даже тремя экструзионными головками. Работает с АВS или РLА-пластиком. Весит ни много ни мало 38 килограмм. Стоимость – около 4 тысяч долларов.

2. 3D-принтер трехцветный ВFB 3000 РАNTHER – первый цветной принтер, который был выпущен на рынок. Сегодня его стоимость составляет около 2,5 тысяч долларов. В качестве рабочего материала применяется стандартная пластиковая нить. Для работы понадобится нить трех цветов.

3. Одна из самых дешевых моделей – РroDеsk3D. Для создания изделий используется система из пяти картриджей. Возможна работа с РLA или АВS-пластиком. Принтер снабжен системой автоматической настройки. Стоит всего 2 тысячи долларов. К сожалению, не может похвастаться высокими показателями разрешения печати.

 

Области применения 3D печати

3D печать открыла большие возможности для экспериментов в таких сферах как архитектура, строительство, медицина, образование, моделирование одежды, мелкосерийное производство, ювелирное дело, и даже в пищевой промышленности.

В архитектуре, например, 3D печать позволяет создавать объёмные макеты зданий, или даже целых микрорайонов со всей инфраструктурой — скверами, парками, дорогами и уличным освещением.

Благодаря используемому при этом дешёвому гипсовому композиту обеспечивается низкая себестоимость готовых моделей. А более 390 тысяч оттенков CMYK позволяют в цвете воплотить любую, даже самую смелую фантазию архитектора.

3d принтер: применение в области строительства

В строительстве есть все основания предполагать, что в недалёком будущем намного ускорится и упростится процесс возведения зданий. Калифорнийскими инженерами создана система 3D печати для крупногабаритных объектов. Она работает по принципу строительного крана, возводящего стены из слоёв бетона.

Такой принтер может возвести двухэтажный дом всего в течение 20 часов.

После чего рабочим останется лишь провести отделочные работы. 3D House Постепенно завоёвывают прочные позиции 3D принтеры и в мелкосерийном производстве.

В основном эти технологии используются для производства эксклюзивных изделий, таких как предметы искусства, фигурки персонажей для ролевых игр, прототипов моделей будущих товаров или каких-либо конструктивных деталей.

В медицине благодаря технологиям трёхмерной печати врачи получили возможность воссоздавать копии человеческого скелета, что позволяет более точно отработать приёмы, повышающих гарантии успешного проведения операций.

Всё большее применение находят 3D принтеры в области протезирования в стоматологии, так как эти технологии позволяют намного быстрее получить протезы, чем при традиционном изготовлении.

Не так давно немецкими учёными была разработана технология получения человеческой кожи. При её изготовлении используется гель, полученный из клеток донора. А в 2011 году учёным удалось воспроизвести живую человеческую почку.

Как видим, возможности, которые открывает 3D печать практически во всех сферах деятельности человека поистине безграничны.

Принтеры, создающие кулинарные шедевры, воспроизводящие протезы и органы человека, игрушки и наглядные пособия, одежду и обувь — уже не плод воображения писателей — фантастов, а реалии современной жизни.

А какие ещё горизонты откроются перед человечеством в ближайшие годы, наверное, это может быть ограничено только фантазией самого человека.

make-3d.ru

3D-принтер — технологии, применение, как работает

Содержание статьи

 

Что такое 3D-принтер

3D-принтер — это устройство, работающее по принципу послойного формирования физического объекта из цифровой 3D-модели.

Процесс трехмерной печати еще называется быстрым прототипированием или аддитивным производством.

Настольный 3D-принтер

Технологии послойного формирования объектов называются аддитивные технологии от английского слова additive – добавлять. В отличии от традиционных способов получения деталей (фрезеровка, точение, распил и т.п.), на 3D-принтере детали получаются методом добавления материала (слоев), что позволяет добиться высокой экономии материалов. 3D-печать может осуществляться разнообразными материалами (от пластика до металла), а также несколькими технологиями, подробнее о которых мы расскажем ниже.

Управление 3D-принтером осуществляется программным способом. Для того, чтобы принтер воспроизводил физический объект, просчет задания на печать должен происходить в специализированном программном обеспечении, в которое загружается цифровая модель в формате для 3D-печати (STL). Специальная программа слайсер разбивает цифровую 3D-модель на слои и выдает сформированный бинарный код понятный для 3D-принтера. Далее полученный код может быть запущен на печать в программном обеспечении для принтера или записан на карту памяти для непосредственной печати без ПК.

 

Способы позиционирования печатающей головки 3D-принтера

FDM экструдер

В зависимости от расположения и механики работы (кинематической модели) печатающего механизма, они подразделяются на следующие основные способы:

  • Декартова, когда в конструкции используются три взаимно-перпендикулярные направляющие, вдоль каждой из которых двигается либо печатающая головка, либо основание модели.
  • Дельта-робот: три радиально-симметрично расположенных двигателя согласованно смещают основания трёх параллелограммов, прикреплённых к печатающей головке
  • Автономная: когда печатающая головка размещена на собственном шасси, и эта конструкция передвигается целиком за счёт какого-либо двигателя, приводящего шасси в движение.

 

Сферы применения 3D-принтеров

  • быстрое прототипирование
  • мелкосерийное производство
  • изготовление мастер-моделей и форм для литейного производства
  • изготовление бытовых предметов
  • производство готовых изделий со сложной геометрией и внутренней структурой
  • макетирование
  • реклама
  • в медицине для изготовления протезов и имплантатов, также ведутся исследования по 3D-печати внутренних органов человека
  • строительство зданий и сооружений
  • производства корпусов экспериментальной техники (от телефонов до оружия)
  • пищевое производство
  • другое

 

Основные технологии 3D-печати

 

Лазерная стереолитография (англ. laser stereolithography, SLA) — 3D-печать, с помощью которой объект формируется из жидкого фотополимера, затвердевающего под воздействием лазерного или ультрафиолетового излучения. Процесс формирования объекта происходит в ванне с жидким фотополимером. На платформе, погруженной в фотополимер путем засветки формируется изображение первого слоя объекта и происходит кристаллизация фотополимера. Затем платформа перемещается на толщину одного слоя (6-100 мкм) вверх и происходит формирование следующего слоя. Процесс формирования слоев продолжается до полного построения объекта, при этом жидкий полимер затвердевает и превращается в достаточно прочный пластик.

Схема 3D-печати SLA

Этот метод 3D-печати немного отличается от других, так как в качестве «строительного материала» используются не порошки, а фотополимеры в жидком состоянии. SLA технология применяется в промышленных 3D-принтерах. С помощью лазерной стереолитографии получаются объекты с высокой (до 6 микрон) точностью и гладкой, почти глянцевой, поверхностью не требующей постобработки.

Фотополимерный 3D-принтер и модель из фотополимера

Полимеризация фотополимерного пластика ультрафиолетовой лампой (англ. Digital Light Processing, DLP) — технология похожа на предыдущую (SLA), но пластик твердеет под действием ультрафиолета. DLP технология может использоваться как в промышленных, так и бытовых 3D-принтерах.

Выборочное лазерное спекание (англ. selective laser sintering, SLS) — 3D-печать, с помощью которой объект формируется из порошкового материала (пластик, металл) в следствие его расплавления лазерным лучом. При SLS печати, материал наносится на платформу тонким равномерным слоем (специальным выравнивающим скребком), после чего на поверхности платформы лазерным излучением формируется первый слой объекта. Затем платформа опускается на толщину одного слоя (16-80 мкм) и на неё вновь наносится порошковый материал. Температура в рабочей камере в процессе 3D-печати поддерживается на уровне чуть ниже точки плавления рабочего материала, что позволяет уменьшить необходимую для сплавления мощность лазера. Для предотвращения окисления материала процесс проходит в бескислородной среде.

Схема 3D-печати SLS

Метод SLS-печати позволяет получать, в том числе, прочные металлические изделия, не уступающие аналогам произведенным традиционными способами, но в отличии от последних, имеющие сложную внутреннюю структуру. SLS применяется только в промышленных 3D-принтерах.

Изделие из металла полученное на 3D-принтере

Выборочное лазерное сплавление (англ. Selective laser melting, SLM) — технология лазерного плавления металлического порошка по математическим CAD-моделям. С помощью SLM-печати создаются сложные металлические детали узлов и агрегатов, а также неразборные конструкции с изменяемой геометрией.

Технология селективного лазерного плавления SLM очень похожа на SLS, однако в отличии от последней, материалы (порошки) подвергаются не спеканию, а плавлению до образования гомогенной (густой, пастообразной) массы, как это происходит в EBM-печати. В отличии от EBM, в SLM используется лазер. Данный процесс успешно заменяет традиционные методы производства, так как физико-механические свойства изделий, построенных по технологии SLM, зачастую превосходят свойства изделий, изготовленных традиционным способом. По принципу SLM построены только промышленные 3D-принтеры.

 

Технология 3D-печати FDM

Моделирование методом послойного наплавления (англ. Fused deposition modeling, FDM) — технология послойного создания трехмерных объектов за счет укладки расплавленной нити из плавкого материала (пластика, металла, воска). В качестве материалов для FDM-печати в большинстве случаев используются термопластики (ABS, PLA и др.), выпускаемые в виде катушек нитей или прутков.

FDM-печать была разработана в конце 1980-х годов С. Скоттом Крампом. Ее коммерческое распространение началось в 1990 году. На сегодняшний день FDM является самой распространенной технологией 3D-печати из-за простоты конструкции и низкой стоимости подобных устройств.

Термин «Fused Deposition Modeling» и аббревиатура FDM являются торговыми марками компании Stratasys. Участники проекта RepRap, придумали аналогичный термин «Fused Filament Fabrication» или FFF (Производство способом наплавления нитей) для использования в обход юридических ограничений. Термины FDM и FFF равнозначны по смыслу и назначению.

Принцип печати по FDM/FFF технологии заключается в нанесении расплавленного материала на рабочую платформу. Нанесенный материал быстро остывает и переходит из вязкого состояния в твердое. Следующий слой наносится на предыдущий и тем самым спаивается с ним. В процессе печати пластиковая нить или пруток под воздействием высокой температуры в экструдере размягчается и выдавливается на платформу. Часто в данном способе печати используют две рабочие головки (экструдера) — одна выдавливает на платформу рабочий материал, другая — растворимый материал поддержки. Материал поддержки позволяет строить сложные объекты без провисания слоев.

FDM-печать применяется как в промышленных, так и в подавляющем большинстве современных бытовых 3D-принтерах. Технология на сегодняшний день настолько распространена, что понятия «бытовой принтер» и «FDM принтер» многие пользователи считают синонимами.

Электронно-лучевая плавка (англ. Electron Beam Melting, EBM) — аналогична SLS/DMLS, только здесь объект формируется путём плавления металлического порошка электронным лучом в вакууме.

Электронно-лучевая плавка — метод плавки металла путем применения электронного пучка. Используется при плавке особо чистых материалов, например, сталей и титана, и материалов, стойких к высокой температуре и химическим воздействиям. При EBM-печати практически отсутствует загрязнение материала посторонними примесями, так как процесс проходит в вакууме. Промышленные электронные плавильные печи позволяют производить изделия длиной в несколько метров и весом несколько тонн.

Технология многоструйного моделирования (англ. Multi Jet Modeling, MJM) — основана на многоструйном моделировании с помощью фотополимерного или воскового материала. Используется в 3D-принтерах компании 3D Systems серии ProJet. Аналогичной технологией является PolyJet от компании Stratasys, которая сопоставима по качеству, но использует более дешевые материалы.

Схема 3D-печати MJM

Принцип MJM-печати заключается в следующем. Печатающая головка со множеством мельчайших сопел, расположенных линейно в несколько рядов наносит материал на рабочую поверхность по принципу струйной печати. Количество сопел начинается от 96 для младших моделей 3D-принтеров и достигает 448 для продвинутых моделей. Блок сопел движется вдоль рабочей поверхности и наносит слой жидкого фотополимера. Затем, УФ-лампа засвечивает только что нанесенные частицы материала, в результате чего тот затвердевает, формируя прочный слой. Операции нанесения и засвечивания материала повторяются до полного построения объекта.

 

Технология цветной струйной печати (англ. Color Jet Printing, CJP) — построена на принципе послойного склеивания и окрашивания композитного порошка на основе гипса или пластика. CJP применяется в 3D-принтерах компании 3D Systems серии ProJet. До этого данный принцип печати назывался 3D Printing (3DP) и был разработан в Массачусетском технологическом институте (MIT) в 1993 году. CJP (3DP) позволяет быстро создавать как одноцветные, так и полноцветные прототипы из композитного порошка.

Изделие полученное на CJP 3D-принтере

Принцип CJP-печати основан на склеивании основного материала (композитного порошка) связующим. Связующий материал — склеивает и окрашивает вместе частицы в нужных местах, формируя изделие. Построение объекта происходит послойно. Сначала материал модели равномерно тонким слоем распределяется по всей поверхности платформы камеры построения. Потом на этот слой наносится связующий материал, склеивая и окрашивая частицы между собой согласно цифровой 3D-модели. Затем платформа смещается вниз на толщину слоя (100 мкм). Операции нанесения материалов повторяются слой за слоем до полного построения модели.

Ламинирование (англ. laminated object manufacturing, LOM) — способ формирования объектов послойным склеиванием (нагревом, давлением) тонких листов рабочего материала с вырезанием (с помощью лазерного луча или режущего инструмента) соответствующих контуров на каждом слое.

Объекты, напечатанные техникой LOM, могут быть дополнительно модифицированы путем механической обработки или сверления после печати. Толщина слоя при печати таким способом зависит от используемого материала, как правило, равна толщине обычной бумаги для копирования.

Схема 3D-печати LOM

Ламинирование не совсем относится к традиционным технологиям 3D-печати, поэтому не очень распространено. 3D-печатm таким способом требует использования материала поддержки, который затем очень затруднительно удалять, особенно на объектах с высокой детализацией.

Биопринтеры — экспериментальные установки, в которых печать 3D-структуры будущего объекта (органа для пересадки) производится каплями, содержащими живые клетки. Далее деление, рост и модификации клеток обеспечивает окончательное формирование объекта.

Понравилось? Покажи друзьям!

3d-week.ru

Как работает 3D-принтер? Изделия на 3D-принтере

Появление на рынке 3D-принтеров ознаменовало новую эпоху. Если раньше продукция, разработанная на базе высоких технологий, в бытовом хозяйстве позволяла решать привычные задачи, то в случае с трехмерной печатью предлагается новый способ применения устройств. Разумеется, новым он является только для рядового пользователя, так как в промышленности и на производственных предприятиях схожие технологии используются давно. Но в любом случае печать на 3D-принтере значительно расширяет возможности потребителя, к освоению которых, как показывает практика, готовы далеко не все. Во многом это связано со сложностью технологической реализации аппаратов, а также с нюансами их эксплуатации.

Но самые интересные вопросы касаются пользы от таких принтеров. Какие изделия позволяет создавать данное устройство? Для каких целей его продукцию можно использовать? И как работает 3D-принтер? Это важные вопросы, так как трехмерная печать все же является недешевым удовольствием. Поэтому приобретать соответствующее оборудование ради любопытства, мягко говоря, нецелесообразно. По крайней мере, стоит детальнее вникнуть в рабочие процессы печати и выяснить, какую пользу от них можно ожидать.

Что такое 3D-принтер?

Это устройство для трехмерной печати, посредством которого можно генерировать объемные предметы, дублирующие заранее подготовленную виртуальную модель объекта. По сравнению с традиционными принтерами, которые выводят электронный текст на бумагу, 3D-устройства обеспечивают вывод трехмерной информации, то есть создают объекты с реальными физическими параметрами. Собственно, для понимания того, как работает 3D-принтер, следует рассмотреть этапы изготовления твердых предметов с его помощью.

Принцип работы в общих чертах

Начинается работа с создания виртуального шаблона на компьютере с помощью специальной программы. Далее происходит обработка программным способом модели с целью ее разделения на слои. После этого в работу вступает техническая часть принтера, послойно формируя массу из композитного порошка для дальнейшего изготовления предмета. По мере заполнения специальной камеры материалом ось принтера распределяет массу по рабочей поверхности. После формирования каждого слоя головка устройства накладывает клеевую основу. Повторяется этот процесс до момента, пока не будет выполнен объект, разработанный в программе для печати. Важно учитывать, что изготовление на 3D-принтере может выполняться по разным технологиям. Соответственно, меняется и техника печати, и свойства используемого материала, а также подходы к программной реализации задачи.

Технология быстрого прототипирования

Несмотря на различия в нюансах процесса изготовления, практически все устройства для трехмерной печати работают на принципе быстрого прототипирования. В соответствии с данной концепцией, производство осуществляется путем быстрого формирования опытных моделей для предварительной демонстрации возможностей будущего продукта. Задумывалась технология еще в 1980-х годах с целью создания образцов и заготовок. Сегодня этот метод известен как аддитивное производство, понимание которого и даст ответ на вопрос о том, как работает 3D-принтер и что отличает его функцию от традиционных подходов к изготовлению предметов. Так, если в процессе фрезерования, точения и электроэрозионной обработки происходит удаление материала, а ковка, прессовка и штамповка изменяют форму заготовки, то аддитивное производство предполагает увеличение массы материала посредством наращивания слоями. Иными словами, 3D принтер изменяет фазовое состояние веществ в определенных границах пространства. На сегодняшний день трехмерная печать развивается в нескольких направлениях, среди которых можно выделить стереолитографические технологии (STL), методы нанесения термопластов (FDM) и лазерное спекание (SLS).

Метод послойного наплавления термопласта

Это, пожалуй, наиболее популярная техника трехмерного изготовления. Распространенности FDM-аппаратов способствует сразу несколько факторов. В первую очередь в работе устройств используются относительно недорогие пластики. Также имеет значение простая техника эксплуатации, что особенно важно в работе с таким оборудованием. Как правило, технологии 3D-принтеров этого типа предусматривают работу с термопластиками, одним из которых является полилактид. Среди преимуществ этого материала отмечается экологичность, так как получают данный пластик из сахарного тростника и кукурузы.

Главным же элементом в самом принтере стоит назвать экструдер, который выполняет задачу печатной головки. Впрочем, в этой части не все так однозначно, поскольку элемент представляет собой комплекс отдельных компонентов. Если рассматривать термин «экструдер» в привычном понимании, то к нему будет относиться только часть головки в виде подающего механизма. Так или иначе, печатающая основа подает пластик для 3D-принтера путем нанесения расплавленной нити. Движение механической части обеспечивается электромотором. В итоге механизм направляет нить в нагреваемую трубу сопла, которая и формирует конечный объект.

Стереолитографические установки

Технология лазерной стереолитографии сегодня широко применяется в протезировании зубов. Это второй по популярности тип принтеров для 3D-печати. Отличительной чертой стереолитографических устройств является получение непревзойденно высокого качества объектов. Достигаются такие результаты благодаря разрешению аппаратов, которое может исчисляться единичными микронами. Поэтому вполне логично, что работа 3D-принтера на основе лазерной стереолитографии высоко ценится не только стоматологами, но и ювелирами. Программная часть устройства во многом напоминает FDM-аналоги, но есть и целый ряд особенностей технологии. Несмотря на тот факт, что принцип печати называют лазерной стереолитографией, все чаще функция такого оборудования базируется на светодиодных ультрафиолетовых проекторах.

Проекторные модели надежнее лазерных и по цене обходятся дешевле. Для них не нужны деликатные зеркала, обеспечивающие отклонение лучей, что упрощает конструкцию. В то же время печать на 3D-принтере с проекторами отличается высокой производительностью. Данное преимущество достигается благодаря тому, что происходит не последовательное, а полное засвечивание контура слоя.

Лазерное спекание

Еще одна разновидность применения лазерного метода. В этом случае применяется легкоплавный пластик. Мощный лазер прорисовывает по пластиковой основе сечение объекта, что приводит к плавлению и спеканию материала. Так происходит с каждым слоем до получения завершенной модели, которую подготовила программа для 3D-принтера в качестве заготовки. Остатки пластикового порошка стряхиваются с полученного предмета в конце рабочего процесса. Существенным недостатком таких аппаратов является создание объектов с пористой поверхностью. С другой стороны, это никак не влияет на прочность изделий. Более того, именно вышедшие из таких принтеров модели являются самыми долговечными. Сама же установка имеет сложную конструкцию и, как следствие, высокую стоимость. При этом и процесс изготовления отнимает много времени по сравнению с 3D-принтерами других типов. Как отмечают пользователи, скорость формирования модели составляет несколько сантиметров в час.

Расходные материалы

Основным материалом для создания моделей путем трехмерной печати является термопластик. Кроме уже упомянутых разновидностей, стоит отметить пластик для 3D-принтера в форматах ABS и PLA. Также используется нейлон, поликарбонат, полиэтилен и другие виды, также используемые в промышленности. При этом некоторые установки допускают и смешивание материалов, а также использование вспомогательных веществ, улучшающих качественные характеристики будущего изделия. Например, для этой цели используют поливиниловый спирт, который, в сущности, является той же разновидностью пластика PVA. Растворив его в воде, пользователь может создавать сложные геометрические фигуры.

Наиболее же экзотическим материалом для использования в подобных задачах является металл. Чтобы получить такое изделие, также применяют 3D-модели для печати на 3D-принтере, а отличия технологии сводятся к функции печатающей головки. С ее помощью наносится связующая клейкая масса в места, куда указывает компьютерная программа. Далее на всю рабочую область головка наносит тонкий пласт металлической пудры. То есть металл не плавится, как в случае с пластиками, а накладывается и склеивается послойно в виде мельчайших частичек.

Управление работой принтера

Для начала стоит отметить операции, которые контролируются пользователем через компьютер. Это регулировка температуры сопла и рабочей площадки, темпы подачи материала и работы электромотора, который обеспечивает позиционирование печатающей головки. Все эти действия находятся под управлением электронных контроллеров. Как правило, современные модели таких устройств базируются на системе Arduino с открытой архитектурой. Что касается программного языка, то в принтерах используется так называемый G-код, построенный на командах управления оборудованием для печати. На этой стадии можно перейти к рассмотрению программ-слайсеров, которые обеспечивают перевод 3D-модели для печати на 3D-принтере в понятный контроллерам код. Сразу надо сказать, что такое программное обеспечение не имеет прямого отношения к разработке графических моделей.

Программное обеспечение

В перечень основных задач слайсеров входит установка параметров, в соответствии с которыми будет осуществляться печать. Выбор конкретной программы определяется типом принтера. Например, устройства RepRap подразумевают использование слайсеров, выполненных с открытым кодом. Среди таких можно выделить Replicator G и Skeinforge. Однако немало и производителей, которые рекомендуют использовать только фирменное ПО от конкретных компаний. Это, в частности, относится к аппаратам Cube от фирмы 3D Systems. Что же касается моделирования изделий, то этим занимается специальная программа для 3D-принтера, предназначенная для трехмерного проектирования. Обычно для этих целей используют CAD-редакторы, которые, впрочем, требуют определенного опыта работы с дизайном 3D.

Какие изделия можно получить?

Спектр возможностей трехмерных принтеров активно расширяется, что позволяет создавать продукцию для самых разных сегментов рынка. Если говорить о строительстве и архитектуре, то здесь очень ценятся возможности изготовление макетов, для которых, собственно, и разрабатывалась концепция аддитивного производства. В машиностроительной промышленности также широко используется 3D-принтер. Изделия в данном случае могут быть представлены и потребительской продукцией, и отдельными элементами для концептов. Как уже говорилось, высокая точность изготовления деталей была высоко оценена работниками медицины. Помимо протезирования, 3D-принтер используется в изготовлении макетов и образцов органов.

Отзывы о 3D-принтерах

Несмотря на активную популяризацию такого способа печати, массовый потребитель пока еще скептически смотрит в этом направлении. Отчасти это связано с высокой стоимостью оборудования, но в большинстве своем даже искушенные потребители новых гаджетов не находят по-настоящему важных задач, которые могли бы решать в домашних условиях 3D-принтеры. Отзывы владельцев между тем отмечают легкость, с которой можно решать элементарные проблемы в быту. К примеру, аппарат позволяет быстро изготовить недостающую деталь для установки мебельного гарнитура, украсить дизайн, изготовить игрушку для ребенка или же оригинальную подставку для телефона. По словам пользователей, работа с оборудованием хоть и требует затрат на расходные материалы, в долгосрочной перспективе оправдывает все вложения.

Заключение

Устройства для трехмерной печати сами по себе являются диковинкой и требуют отдельного рассмотрения для понимания отличий внутри сегмента. Но даже знание общих принципов того, как работает 3D-принтер, позволяет говорить о большом потребительском потенциале таких устройств. Теоретически с помощью такого оборудования можно наладить домашнее безотходное производство. Другой вопрос – что именно изготавливать на таком принтере? Но ответ дает каждый пользователь индивидуально, исходя из своих потребностей. За довольно внушительную сумму можно получить настоящий конвейер. На данном этапе его возможности оценивают в основном специалисты, которые используют печать 3D в решении своих профессиональных задач.

fb.ru

3D-принтер | Энциклопедия 3D-печати

Описание

Технология печати методом послойного наплавления (FDM) получила широкое распространение среди индивидуальных пользователей и небольших компаний благодаря широким возможностям, относительной простоте и хорошей ценовой доступности. Популярность этого метода заслуживает более подробного описания процесса и используемых принтеров. В этом разделе мы рассмотрим нюансы конструкции принтеров и применение технологии на практике.

Общий процесс

Как и все методы 3D-печати, FDM относится к технологиям аддитивного производства. Термин «аддитивный» является англицизмом от слова «additive», означающим «добавка» или «за счет добавления». Термин предназначен для обособления технологий производства сложных трехмерных изделий, отличающихся от привычных «субтрактивных» («subtractive» — «за счет отделения») методов – фрезеровки, сверления, шлифовки и пр.

FDM можно считать одним из наиболее технологически простых методов 3D-печати. В основе процесса лежит последовательное наслоение тонкой нити расплавленного пластика вплоть до создания цельного трехмерного объекта. В качестве расходного материала используется пластиковая нить, намотанная на катушку. Изредка используются отдельные прутки пластика. Стандартный диаметр нити составляет 1,75мм или 3мм.

Процесс печати состоит из ряда этапов:

  • Создания или импорта цифровой трехмерной модели

  • Обработки цифровой модели для печати с добавлением поддерживающих структур

  • Расположения и ориентировки цифровой модели на рабочем столе

  • Слайсинга – нарезки цифровой модели на отдельные слои с преобразованием данных в инструкции для работы принтера, называемые G-кодом

  • Непосредственно печати

  • При необходимости, физической или химической обработки готовой модели

Конструктивные элементы

Корпус

3D-принтер Ultimaker с открытым деревянным корпусом

В конструкции FDM 3D-принтера важны многие элементы, не всегда очевидные неискушенному человеку. Так, имеет значение материал корпуса в том случае, если он несет нагрузку. Многие FDM принтеры выпускаются с деревянными корпусами – такое решение кажется дешевым и неказистым, но на самом деле помогает поглощать вибрации при печати, что положительно сказывается на качестве изготовляемых моделей. С другой стороны, стальная или алюминиевая рама обеспечивает долговечность и ударостойкость устройства.

Имеет значение и открытая или закрытая конструкция принтера. Хорошо вентилируемая рабочая камера полезна при печати полилактидом (он же PLA-пластик), так как этот материал долго стеклуется. Если напечатанные слои не будут успевать застывать и схватываться, возможно их растекание, либо деформация нижележащих слоев под давлением верхних.

С другой стороны, многие популярные материалы (например, ABS-пластик и нейлон) имеют высокую степень усадки. Под «усадкой» подразумевается сокращения объема материала при остывании. В случае с тем же ABS-пластиком чрезмерно быстрое и неравномерное охлаждение нанесенных слоев может привести к их закручиванию, либо деформации и растрескиванию модели в целом.

3D-принтер PICASO Designer с закрытым пластиковым корпусом

В этом случае корпус с закрытой облицовкой приходится кстати, позволяя добиваться медленного, равномерного охлаждения материала.

Наконец, форма FDM принтера может быть связана и с используемой системой координат.

Так, наиболее популярным вариантом является Декартова или, что точнее в большинстве случаев, прямоугольная система координат.

В последнее время набирает популярность дельтаобразная системы координат – такие устройства именуются «дельта-роботами» и предлагают определенную выгоду в плане точности печати и легкости расширения вертикального размера области построения.

Несущие элементы конструкции и направляющие обычно выполняются из алюминия или стали. Привод экструдера и платформы осуществляется с помощью ремней или винтов.

Экструдер принтера 3DPrintBox в частично разобранном состоянии. Хорошо видна розовая пластиковая нить и протягивающий механизм – две шестерни с проточками в зубьях

Экструдер

Следующим важным элементом является экструдер, то есть печатающая головка принтера. Эти устройства могут варьироваться конструктивно, но в целом содержат одинаковые основные компоненты:

  • Протягивающий механизм для подачи нити в сопло

  • Сопло, служащее для плавки нити и экструзии расплавленного материала

  • Нагревательный элемент для подогрева сопла

  • Вентилятор

Как правило, протягивающий механизм состоит из шестерней или винтов, приводимых в действие электромотором.

Как очевидно, электромотор приводит в движение шестерни, осуществляя подачу пластиковой нити в сопло. В сопле происходит плавка нити с последующей экструзией вязкого материала.

Исключительно важным моментом является резкий градиент температур между нижней и верхней частью сопла – именно для этой цели и устанавливается вентилятор.

При переходе порога температуры стеклования пластик становится мягким, но еще не вязким, расширяясь в объеме.

Экструдер принтера 3DPrintBox в собранном состоянии. Виден электромотор протягивающего механизма (сверху), двойной вентилятор (в середине) и сопло с присоединенным электронагревательным элементом (внизу)

В этом состоянии возрастает трение материала с внутренними стенками сопла.

Если длина (и, как следствие, площадь) этого участка слишком велика, то суммарный коэффициент трения может стать непосильным для протягивающего механизма.

Таким образом, длина участка сопла с нерасплавленной нитью и длина участка с расплавленным материалом не имеют особого значения, а вот длина участка с пластиком при температуре стеклования должна быть как можно короче.

Самым эффективным решением этой проблемы является применение радиаторов и вентиляторов, охлаждающих нить и верхнюю часть сопла.

Справедливости ради отметим, что время пребывания пластика в расплавленном состоянии тоже следует минимизировать, ибо многие термопластики теряют пластичность после длительного пребывания при высоких температурах, а образующиеся твердые частицы могут забить сопло.

Диаграмма перехода пластиковой нити из твердого состояния в вязкое. Длина среднего участка должна быть как можно короче для предотвращения проблем с проталкиванием материала

Как правило, такого рода проблемы не возникают при нормальной, стабильной экструзии, ибо длина сопла слишком мала.

Забивание сопла может произойти при наличии внутренних неровностей, либо при погрешностях в изготовлении нити: возникающие застои приводят к постепенному образованию крупинок, которые затем увлекаются потоком расплавленного пластика и забивают выходное отверстие.

Наиболее популярные материалы для изготовления сопел – алюминий и латунь.

Диаметр отверстия может варьироваться, но средняя величина составляет 0,3мм.

Отверстия меньшего диаметра позволяют добиваться более высокого разрешения, в то время как увеличение диаметра повышает скорость построения и снижает риск забивания сопла.

Рабочая платформа

Платформа 3D принтера 3D Systems Cube передвигается по осям X и Z, а экструдер – по оси Y

Рабочая платформа служит в качестве поверхности для построения моделей.

В зависимости от используемой системы координат, платформа может быть подвижной или статической.

Как правило, в принтерах, использующих Декартову систему координат, движение платформы в вертикальной плоскости отвечает за вертикальное позиционирование экструдера относительно самой платформы.

Некоторые модели добавляют и движение платформы по одной из осей в горизонтальной плоскости, что позволяет несколько уменьшить габариты устройства при условии наличия открытого корпуса.

Примером таких принтеров служит популярный 3D Systems Cube.

Рабочая платформа дельта-роботов остается на месте. Позиционирование экструдера в трех плоскостях осуществляется исключительно за счет движения трех манипуляторов

Принтеры дельтаобразной конфигурации («дельта-роботы») используют статические платформы.

Позиционирование печатной головки во всех трех измерениях осуществляется исключительно за счет передвижения самого экструдера.

Как правило, экструдер подвешивается на трех манипуляторах, чье скоординированное движение по вертикальным направляющим и перемещает головку.

Ассиметричное движение регулирует позиционирование экструдера по горизонтали за счет изменения угла наклона манипуляторов, а симметричное – по вертикали.

Альтернативно, возможно использование подвижной платформы и стационарного экструдера, но такие дизайны пока не получили широкого применения.

Экспериментальный принтер Quantum Delta использует «перевернутый» дизайн с подвижной платформой и стационарным экструдером

Отличительной особенностью всех дельта-принтеров является цилиндрическая форма области построения. Одним из достоинств подобных дизайнов является легкость наращивания рабочей зоны. Так, для увеличения высоты построения требуется лишь установить направляющие и кабели увеличенной длины.

Тем не менее, даже статические платформы нельзя назвать полностью неподвижными. Перед началом печати требуется калибровка платформы, то есть устранение возможного наклона. Механизмы калибровки могут быть как ручными, так и автоматическими, в зависимости от модели принтера.

В случае ручной калибровки от пользователя потребуется последовательное позиционирование сопла в различных точках платформы.

Для измерения дистанции используются специальные шаблоны, а в случаях наиболее простых или самодельных конструкций – просто листы офисной бумаги, чья толщина примерно соответствует 100 микронам.

Более продвинутые устройства вроде MakerBot Replicator используют специальные сенсоры для точного измерения дистанции. Регулировка наклона производится за счет вращения подпружиненных винтов, на которые опирается платформа.

Калибровка платформы зачастую осуществляется с помощью регулировочных винтов, хотя большинство принтеров помогают в этой задаче, последовательно перемещая экструдер в разные точки платформы

Важность калибровки невозможно переоценить, ибо от нее зависит успех нанесения первого слоя пластика и успех печати в целом.

Если высота сопла будет слишком мала, то экструзия просто не произойдет.

Если слишком велика, то пластик не схватится с поверхностью, и принтер будет печатать «по воздуху», создавая хитросплетения пластиковой нити, не имеющие ничего общего с заданной моделью.

Результатом же наклона платформы может стать сочетание этих двух эффектов. Как бы ни была совершенна конструкция принтера, пользователям рекомендуется прослеживать хотя бы построение первых нескольких слоев модели.

Перфорированный рабочий столик принтера Up! Plus 2 обеспечивает хорошее сцепление пластика с поверхностью, но требует тщательного ухода, так как отверстия легко забиваются

В зависимости от конструкции, рабочая платформа может быть оснащена съемным столиком.

Такое решение зачастую применяется в принтерах с закрытыми корпусами, затрудняющими снятие моделей с платформы или чистку поверхности.

В случае применения перфорированных столиков такое решение просто необходимо, так как чистка поверхности производится вымачиванием в растворителях.

Минусом съемных столиков является возможность возникновения люфта при достаточной слабости креплений или зажимов.

Подогреваемая алюминиевая платформа со съемным стеклянным рабочим столиком принтера PICASO Designer

При печати определенными видами материалов, такими как ABS-пластик или нейлон, платформа оснащается нагревательным элементом. Целью нагрева является замедление остывания нижних слоев ради предотвращения их закрутки, вызываемой усадкой термопластика. Подробнее об этом явлении и методах борьбы можно прочитать в разделе «Как избежать деформации моделей при 3D-печати».

Материалы, применяемые для изготовления рабочих столиков весьма разнообразны. Среди них можно упомянуть алюминий, сталь, акрил – наличие подогрева, само собой, сужает выбор материалов. Популярным выбором в последнее время стало стекло, что обуславливается высокой стойкостью к деформациям и легкости достижения идеально ровной поверхности при производстве. Некоторые производители даже используют вулканическое стекло из-за низкой теплопроводности, позволяющей замедлять охлаждение начальных слоев модели.

Подготовка цифровой модели

Популярный слайсер с открытым исходным кодом ReplicatorG

Само создание цифровых трехмерных моделей не входит в процесс 3D-печати. Для создания моделей используются обычные системы автоматизированного проектирования («САПР» или «CAD» в англоязычной терминологии), включая такие 3D-редакторы, как SolidWorks, AutoCad и LightWave среди многих.

Процесс подготовки модели к печати начинается с импорта трехмерной модели в формате .STL в специальную программу, называемую «слайсер». Такие программы выполняют функции графических редакторов, позволяя добавлять опорные элементы, необходимые для поддержки навесных элементов моделей. Многие слайсеры позволяют добавлять опорные структуры автоматически, не требуя усилий со стороны пользователя. Кроме того, слайсеры позволяют размещать модели на рабочем столе и менять их пространственную ориентацию.

Продвинутые программы позволяют изменять и тонкие настройки печати – толщину наносимого слоя, температуру сопла, учитывать используемый расходный материал.

Возможности слайсеров тесно связаны и с возможностями самих принтеров. Некоторые модели имеют «закрытый код», требующий использования фирменных слайсеров. Среди наиболее популярных слайсеров с открытым исходным кодом такие программы, как Repetier-Host, ReplicatorG и Skeinforge.

Построение опорных структур модели в слайсере Repetier-Host

После того, как цифровая модель размещена на виртуальном рабочем столе, созданы необходимые опоры и выполнены настройки, производится непосредственно слайсинг – нарезание трехмерной модели на виртуальные слои с толщиной, соответствующей толщине слоев наносимого пластика. Каждое такое сечение будет служить в качестве шаблона для построения конкретного слоя физической модели. Конечный результат предоставляется в виде G-кода – набора команд для 3D-принтера, определяющих движение экструдера и платформы в процессе печати. G-код может быть передан непосредственно с компьютера с помощью прямого соединения, либо записан на карту памяти или USB-накопитель для автономной печати при условии, что принтер оснащен необходимым интерфейсом и контрольным модулем.

Печать

Некоторые энтузиасты 3D-печати создают собственные скребки для снятия готовых моделей с рабочего столика

Печать может занимать достаточно продолжительное время, зачастую исчисляемое часами. Продолжительность зависит от скорости печати и размера изготовляемых моделей. Скорость печати, в свою очередь, зависит от сложности модели, совершенства алгоритмов позиционирования, толщины слоя и диаметра сопла. Прерывание процесса печати может привести к потере модели. Хотя некоторые принтеры и позволяют временно останавливать процесс для замены расходного материала, продолжительная пауза приведет к остыванию верхних слоев. При возобновлении печати последующие слои могут «не схватиться» с уже напечатанными.

Для снятия готовых моделей со столика применяются тонкие скребки. В то же время рекомендуется дождаться хотя бы частичного остывания модели во избежание повреждения еще мягких слоев или ожогов при прикосновении к еще горячему пластику. Кроме того, при наличии достаточного терпения можно дождаться полного охлаждения и усадки, которая в большинстве случаев автоматически проводит к отделению модели от столика.

Демонстрация опорных структур в составе готовой модели

В зависимости от рабочего пластика, может быть возможна механическая или химическая обработка. Так, модели из ABS-пластика поддаются обработке парами ацетона, что приводит к сглаживанию шероховатостей и печатных артефактов, но может привести и к потере наиболее деликатных черт модели. В основном, обработка сводится к удалению поддерживающих структур навесных элементов модели. При печати на принтерах с одним экструдером опоры выполняются из того же материала, что и сама модель, несколько усложняя процесс. При использовании принтеров с двумя или более печатными головками, возможно построение опор с использованием водорастворимого поливинилового спирта (PVA-пластика). Подробнее о пластиках, используемых в FDM 3D-печати можно узнать в разделе «Расходные материалы для моделирования методом послойного наплавления».

Применение

3D-печатные прототипы контроллера для игровой приставки Xbox One

Относительная дешевизна FDM принтеров и расходных материалов обуславливает широкую популярность этой технологии. В первую очередь, такие устройства используются для быстрого прототипирования. Различные пластики позволяют создавать функциональные модели всевозможных изделий. Так, популярный в FDM печати ABS-пластик получает широчайшее применение в массовом производстве всевозможных бытовых изделий, автомобильных деталей, инструментов, игрушек, сувениров и пр. Достаточно высокая точность 3D-печати позволяет получать функциональные прототипы, практически не отличающиеся по качеству изготовления от традиционных литых изделий.

3D-принтер MakerBot Mini был создан для применения в быту и общеобразовательных учреждениях

Такое применение технологии позволяет добиться существенной экономии при разработке новых дизайнов. Компания Microsoft использовала 3D-печать для создания порядка двухсот прототипов контроллера для приставки Xbox One, а компания Dell разместила заказ на пять тысяч FDM принтеров M200 производства польской компании Zortrax для использования в филиалах по всему миру.

Хотя производительность FDM 3D-печати достаточно низка, относительная дешевизна позволяет применять FDM принтеры для производства небольших партий готовых изделий – сувениров, игрушек и т.п.

Совершенствование технологии и существенное снижение стоимости устройств позволяет FDM принтерам постепенно внедряться в быт. Выгода от домашнего использования 3D-печати очевидна – даже достаточно простые устройства способны производить бытовые приспособления или сломанные пластиковые детали по мере необходимости. Себестоимость домашнего производства уже делает подобное применение выгодным в сравнении с приобретением готовых изделий. Единственным существенным препятствием на пути к широкому распространению 3D-принтеров в быту можно считать нежелание большинства людей вдаваться в подробности трехмерного цифрового дизайна. Этот барьер постепенно нивелируется за счет таких популярных сервисов, как Thingiverse, Shapeways и Cubify, предлагающих различные готовые к печати 3D-дизайны. Многие из доступных цифровых моделей предоставляются бесплатно.

3D-печатный пистолет Liberator поставил под сомнение способность государственных органов регулировать оборот огнестрельного оружия

Немало шума наделал пистолет Liberator. Дизайн этого оружия включает в себя один единственный металлический элемент – боек, в качестве которого может использоваться обычный гвоздь. Все остальные элементы конструкции могут быть распечатаны. Дизайн пистолета был выложен в открытый доступ.

Наконец, развитие FDM 3D-печати позволяет развивать целую отрасль 3D-дизайна и печати на заказ. 3D-бутики уже становятся привычным явлением во многих странах. Дальнейшее распространение технологии FDM печати может привести к реструктуризации мировой экономики: по мере роста домашнего производства спрос на готовые изделия будет падать параллельно с ростом спроса на расходные материалы. Химическим производителям, торговым сетям и транспортным компаниям придется подстраиваться под новую бизнес- модель, основанную на локальном производстве.

Перейти на главную страницу Энциклопедии 3D-печати

3dtoday.ru

3d-принтер (конструкция, виды, производители) | Wiki 3DP

3D-принтер — это периферийное устройство, осуществляющее 3D-печать методом послойного формирования физического объекта по заданной цифровой 3D-модели.

Благодаря определенной простоте базовой конструкции оборудования, позволяющего осуществлять объемную печать, разработки в данной области ведутся как простыми людьми — энтузиастами 3d-печати (фактически каждый может собрать свой собственный 3d-принтер своими руками), так и крупными отраслевыми компаниями и центрами разработки.

Современные 3d-принтеры могут печатать как различными полимерными материалами (основная доля расходных материалов), так и металлом, специализированными строительными составами, продуктами питания и био-материалами.

3д-принтеры уже сегодня применяются как для бытового так и для профессионального прототипирования объектов. На сегодняшний день помимо условно «стандартных» образцов оборудования, имеются разработки и конструкции, осуществляющие печать еды, принтеры применяемые в медицине и принтеры способные печатать малоэтажные дома и небольшие конструкции.

Также отметим, что 3д-принтеры в частности и 3д-печать в целом активно используются в образовании, робототехнике и ряде других социально-значимых и инновационно-перспективных направлений.

Следует отметить, что 3d-принтеры — это одна из немногих категорий оборудования имеющих реальную возможность к самовоспроизведению (в частности, проект RepRap).[1]


Виды 3d-принтеров

Классификация 3д-принтеров ведется по нескольким ключевым параметрам, основными из которых являются: применяемая технология 3d-печати; материал печати; уровень качества и стабильности размеров получаемых изделий.

В последнем случае различают домашний (настольный) 3d-принтер и 3d-принтер профессионального класса, демонстрирующий более стабильные размеры напечатанных объектов, повышенную производительность (скорость печати) и качество прототипирования. Оборудование профессионального класса активно применяется в различных конструкторских бюро (с целью создания моделей и прототипов разрабатываемой продукции или конструкций), а также для целей мелкосерийного производства широкой гаммы изделий (сувенирная продукция, индивидуализированные корпуса электроники и тому подобное).


Типовая конструкция 3d-принтера

Индустрия 3D-печати переживает в настоящий момент этап бурного роста и развития, что привело к тому, что на сегодняшний день на рынке присутствует крайне широкая и весьма пестрая гамма образцов оборудования: от любительских принтеров, собранных своими руками в единичном экземпляре из подсобных деталей и элементов, до промышленных образцов, способных создавать высокоточные копии объектов с весьма сложной геометрией.

В целом, устройство 3D-принтеров на самом деле не очень сложное. Главные проблемы при изготовлении принтеров – обеспечить точность сборки и дальнейшей точности позиционирования по всем осям для экструдера, чтобы обеспечить качество печати.

Для того чтобы представить типовую конструкцию 3д-принтера рассмотрим самую распространенную (в настоящее время) технологию объемной печати — FDM (метод послойного наплавления).

Типовая конструкция 3D-принтера печатающего по методу послойного наплавления (FDM). (Визуализация: 3D Today)

3d-принтер состоит из:

  1. Корпус, играющий роль скелета для монтажа конструкционных элементов;
  2. Направляющие, осуществляющие сравнительно свободное перемещение печатающей головки в заданном пространстве;
  3. Печатающая головка (экструдер)группа частей, которая выполняет подачу, нагрев и вытеснение (экструзию) расходного материала через сопло на рабочую поверхность;
  4. Шаговые двигатели — элементы конструкции 3д-принтера, отвечающие за равномерное перемещение печатающей головки в заданном пространстве;
  5. Рабочий стол — строительная платформа 3D-принтера, на которой и осуществляется непосредственное создание трёхмерного объекта;
  6. Электроника — набор элементов, отвечающий за управление и координацию действий принтера в процессе печати.

Подробнее остановимся на некоторых (наиболее важных) элементах базовой конструкции 3д-принтера[2].

Экструдер (печатающая головка) 3d-принтера

Наиболее важный элемент конструкции данного вида оборудования. Экструдер 3д-принтера — это узел, который обеспечивает подачу расплавленного пластика в рабочую зону аппарата. На сегодняшний день уже имеется огромное количество различных конструкторских решений.

В частности, имеются образцы оборудования оснащенные сменными соплами различного диаметра. Также есть варианты принтеров с двумя экструдерами в конструкции. Такие образцы способные печатать двумя цветами или осуществлять печать поддержек растворяемым пластиком PVA или HIPS.

Обслуживание экструдера 3д-принтера состоит в его очистке снаружи от налипших в процессе печати кусочков пластика. Иногда, обычно при работе с некачественными расходными материалами, сопло экструдера может довольно сильно засоряться — в этом случае приходится проводить его чистку.

Рабочий стол 3д-принтера

Стол может быть как нагреваемым, так и без такового. Для калибровки стола применяются либо автоматические приводы (автоматическая калибровка) или подпружиненные болты (ручная регулировка). Покрыт обычно стеклом, хотя есть варианты 3д-принтеров и с перфорированной платформой. Для нагреваемого стола еще добавляется и нагреваемый элемент.

Обслуживание данного элемента конструкции заключается в его калибровке и регулярной чистке поверхности.

Электроника и управление

Плата управления может находиться в корпусе. Большинство 3d-принтеров имеют плату на основе RAMPS. Но есть и варианты со своими решениями. Обычно достаточно проверять работает ли кулер охлаждения (если он необходим в данной конструкции).

Что касается экрана управления 3д-принтером, то он, следует отметить, присутствует отнюдь не на всех моделях данной категории оборудования. Обычно он есть там, где есть возможность печатать с SD карты.


Принцип работы 3д-принтера

Как уже было замечено, на сегодняшний день в индустрии насчитывается уже несколько подвидов методов 3д-печати, а также весьма обширный набор соответствующего оборудования и конструкций.

Для того, чтобы рассмотреть принцип работы 3d-принтера обратимся к его ключевому элементу (головке экструдера) и методу объемной печати, использующей пластиковую нить.

Процесс 3д-печати:

Нить (филамент) поступает в печатающую головку (экструдер), после чего осуществляется разогрев нити до ее жидкого состояния. Далее полученная масса выдавливается через сопло экструдера. При этом шаговые двигатели с помощью зубчатых ремней приводят в движение Экструдер, который перемещается по направляющим в заданном направлении и наносит пластик на платформу слой за слоем согласно заданной модели.[3]


3d-принтер — производители

Технология 3d-печати с одной стороны еще находится на этапе своего зарождения и становления, с другой стороны базируется на весьма проработанных технологических решениях из ряда других областей (в частности, экструзии полимеров). Данные обстоятельства в совокупности с развитием интернета, значительно ускорившего и упростившего обмен информацией в мировых масштабах, привели к тому, что теми или иными успехами в области разработки, конструирования и производства оборудования для 3d-печати могут похвастаться очень многие компании по всему миру.

Подавляющее большинство таких компаний (на сегодняшний день) занимается сборкой оборудования из готовых конструкционных элементов по находящимся в свободном доступе конструкторским схемам с минимальными изменениями и новациями. Однако на рынке уже есть и свое лидеры, — относительно крупные компании, сравнительно (учитывая возраст самого рынка 3д-печати) давно работающие в данной области. Список наиболее заметных из них представлен ниже.

Ведущие производители:

  • 3D Systems (США);
  • EnvisionTEC (Германия);
  • Stratasys (США);
  • MX3D (Нидерланды);
  • Rapid Shape (Германия);
  • DWS s.r.l. (Италия);
  • Wuhan Binhu Mechanical & Electrical (Китай);
  • MakerBot Industries (США);
  • RepRapPro (Великобритания);
  • Magnum (Россия);
  • Ultimaker (Нидерланды);
  • PICASO 3D (Россия).

В общем и целом свое разработчики и (или) производители 3д-принтеров имеются практически в каждой цивилизованной стране мира. По различным оценкам экспертов и аналитиков, на сегодняшний день в мире можно купить 3d-принтер по меньшей мере от 300 компаний.

В Европе (как можно заметить из приведенного выше списка) центральное место занимают немецкие, голландские и итальянские компании, что вполне коррелирует с тем какое место на международном рынке занимают местные компании-производители оборудования для переработки полимеров. Также заметное место на мировом рынке аддитивных технологий занимает и Великобритания, где по разным оценкам насчитывается как минимум 15 компаний, разрабатывающих и изготавливающих оборудование для объемной печати.

В Азии безусловным лидером рынка выступают китайские компании. Однако и кроме них здесь есть заметные игроки и из других стран региона: Индия, Япония, Южная Корея, Тайвань и даже Таиланд и Гонконг.

На постсоветском пространстве безусловным лидером по количеству отраслевых компаний, работающих в области разработки и изготовления 3d-принтеров и вспомогательного оборудования, выступает Российская Федерация, на территории которой (по различным оценкам) уместилось по меньшей мере 36 предприятий, главные из которых представлены выше. Также следует отметить, что свое отраслевые фирмы имеются в Украине, Беларуси, Литве и Латвии.

В Северной Америке, помимо мирового лидера — США, свое функционеры в области разработки, производства и внедрения оборудования для печати 3dp присутствуют и в Канаде.

В заключении отметим, что есть свое компании-производители и в таких странах, как Израиль; Бразилия, Новая Зеландия и Австралия, хотя их можно в прямом смысле слова «пересчитать по пальцам» и заметного влияния на мировой рынок они (на данный момент) не оказывают.


Узнать больше про 3d-принтер:

Также, для получения более полной картины по тематике 3д-печати в целом и 3д-принтеров в частности рекомендуем воспользоваться поиском по сайту (вверху страницы).


mplast.by

3D печать и 3D принтер, что же это такое?

March 13, 2016

В самом начале нынешнего века 3D стало неотъемлемой частью нашей жизни. Первоначально оно вызывало ассоциации с миром кино, мультфильмов или фотографий. Но сомневаемся, что в наше время есть хоть один человек, который не слышал что такое 3D-печать.

Что же это за новый термин, как он способен повлиять на Буденную жизнь, производство и науку, мы с вами увидим в данной статье.

В самом начале предлагаем вам небольшой экскурс в историю. Хотя о 3Д печати начали массово упоминать лишь на протяжении недавних лет, в действительности она действует уже довольно давно. Еще в 1984 году компания Charles Hull разработала 3Д печать, источником для которой были бинарные данные, и уже 2 года спустя получила патент на изобретение по имени стерео литография. В том же году инженерам удалось изготовить первый в мире промышленное 3Д печатающее устройство. Некоторое время спустя за разработку перспективного направления взялась и компания 3D Systems, она еще в 1988 г. создала образец принтера для 3Д печати в домашних условиях, а именно SLA – 250.

Через короткий промежуток времени, торговая марка Scott Grump смогла реализовать моделирование плавлеными осаждениями. После пары лет затишья, в 1991 году компания Helisys изобретает и выдает на общий суд новейшую методику многослойного оттиска, а уже через год, в 1992, в компании DTM видит свет одна из первых систем селективного сваривания лазером. После чего, в 1993 году создается организация Solidscape, и занимается массовым производством принтеров струйного типа, которые имеют возможность воссоздавать разные объекты, имеющие практически идеальную поверхность, и при этом обладая сравнительно не большими затратами. В это же время Массачусетский институт показал свою технологию 3Д печати, чем то похожую на ту, которая используется в стандартных струйных  печатающих устройствах. Но все же наибольший пик развития 3Д печати попадает на 21 век.

В 2005 году увидел свет 3D принтер, который не просто создавал детали, а делал их цветными. Продукт компании Z Corp имел имя Spectrum Z510, а практически уже через пару лет появился принтер, который мог воссоздавать до 50% всех элементов, из которых был сделан. Сегодня среда использования 3Д печати неуклонно ширится, ведь с ее помощью, как оказалось, можно создать практически все, начиная от внутренних органов живых существ и заканчивая банальной мебелью. Но о сферах использования 3D принтеров мы упомянем чуть ниже.

3D печать, как это действует

По сути, 3D печать это точное воссоздание смоделированной на компьютере детали, при помощи специального печатающего устройства. Изначально цифровая модель это STL-документ, а уже потом 3Д принтер, из такого файла делает реальный объект. Сам же процесс печати это периодически повторяющееся нанесение слоев, на рабочий стол (элеватор), с постепенным его движением вниз, а впоследствии уборка излишков печатающей смеси. Циклы печати монотонно сменяют друг друга, и с каждым из них элеватор опускается вниз на заданную высоту, таким путем и создается сама деталь.

Как работает 3D принтер

Как оказалось 3D печать способна отлично заменить мелкое прототипирование деталей. В отличии от обычного принтера, способного воссоздавать только фотографии, 3D машина делает настоящие объекты. Сегодня такие аппараты способны работать с фотополимерными смолами, пластиковыми проволоками разной толщины, порошком из керамики и металл глиной.

Что же такое 3d принтер?

В основе такого устройства лежит постепенное воссоздание объекта из файла, с послойным нанесением вещества. По сути, деталь как бы растет и, в конце концов, заканчивая свой рост, превращается в готовое изделие. К достоинствам именно 3D печати следует отнести простоту процесса, ее невысокую стоимость и главное высокую скорость работы. Например, для того чтобы создать какую ни будь сложную деталь вручную, может понадобиться очень много усилий и времени — вплоть до месяцев. К тому же при традиционном способе предварительно необходимо создать чертежи и проверить их. Как результат производитель имеет более высокие затраты на разработку и долгое время на нее же.

3D технология напрочь лишена вышеописанных недостатков, тем более при ее применении различные моменты и неполадки, которые могут возникнуть, устраняются еще в процессе разработки, а не изготовления, как при ручном проектировании. Так же при компьютерном моделировании детали, инженер еще на первых стадия может протестировать ее и рассмотреть со всех ракурсов, а в случае обнаружения недостатков, сразу устранить их. Именно поэтому наличие ошибок в напечатанных деталях полностью исключено.

На сегодня есть сразу несколько разных методик 3Д печати, и отличаются они именно способом нанесения слоев. Давайте поговорим о главных из них. Основными технологиями 3D печати являются SLS (селективное лазерное сплетение), НРМ (наложение слоев плавлением материалов) и SLA (стереолитиография). Наиболее востребованной, благодаря своей высокой скорости, выступает именно технология SLA.

Технология SLA

Лазерный луч направляется на фото полимер, и тем самым дает нанесенному материалу отвердеть. В роли фото полимера применяется полупрозрачное вещество, которое способно деформироваться под воздействием атмосферной влаги. После своего затвердевания такой материал можно легко склеивать, обрабатывать и окрашивать. Сам рабочий стол (элеватор) прибывает в ёмкости наполненной фото полимером. После нанесения очередного слоя, лазерный луч проходит по нему, делая твердым, и рабочий стол смещается вниз.

Технология SLS

Это так называемое спекание или сплавление составов порошкового типа, SLS — одна из немногих методик, способная изготовить формы, как для пластикового литья, так и металлического. Пластиковые объекты имеют превосходные механические качества, в силу чего их спокойно можно использовать для создания полноценных деталей механизмов. В SLS берутся материалы, которые по своим параметрам близки к законченным продуктам, таким как керамика, пластик либо металл.

Сам принтер построен следующим образом – порошок наносится на поверхность элеватора и под действием лазера спекается в твердый слой, соответствующий необходимым требованиям.

Технология DLP

Технология DLP – присутствует на рынке трех мерной печати сравнительно недавно. Стереолитографические печатающие устройства в наши дни позиционируются в качестве альтернативы FDM моделям. Такие устройства используют методику обработки световым излучением. В отличии от аналогов где для печати применяются пластиковые проволоки и элементы нагрева, тут используются фотополимерные смолы в совокупности с DLP-проектором. Несмотря на замысловатое название DLP 3D принтер, практически не отличается от любых других серийных собратьев. Нужно так же заметить что разработчики из компании QSQM Technology Corporation, уже начали создавать первые устройства данной  серии.

Технология EBM

Нужно заметить, что методики SLS/DMLS – не единственные, способные осуществлять печать металлом. Сегодня для таких целей применяется и электронно-лучевая плавка. Как показали тесты в лаборатории, нанесение слоев металла, посредством плавки проволоки, малоэффективны, именно поэтому и был разработан особый материал – металлоглина.

Металлическая глина, выступает как бы чернилами при электронно-лучевой наплавке, она делается из совокупности клея, стружки металла и воды. Чтоб преобразовать чернило в твердое вещество, его необходимо разогреть до температуры, при которой вода и клеящая смесь испарятся, а металлическая стружка сплавится воедино.

Как работает EBM 3d принтер

Точно такой же вариант применен и при работе с SLS принтерами, с той лишь разницей, что EBM-модели создают для плавки металла глины, упорядоченные электрические импульсы, а не лазерный луч. Такой подход позволяет достигнуть отличного качества изготавливаемых объектов и превосходной детализации. Сегодня в продаже существуют только промышленные устройства, с задействованием EBM технологии.

Технология НРМ (FDM) HPM

Эта технология может изготавливать не просто модели, а полностью готовые детали из различных видов пластика. К ее достоинствам следует отнести возможность использования промышленного сырья, в то время как на других устройствах это невозможно. Детали, созданные по технологии НРМ (FDM) HPM обладают отличной стойкостью к любым видам воздействий, а так же высокой прочностью.

Печать с применением технологии НРМ отличается хорошей гладкостью поверхности, легкостью в эксплуатации и способностью работать в офисе. Объекты, изготовленные из термопластика, обладают хорошей стойкостью к повышенным температурам, механическим воздействиям, разным химическим реагентам, а также влажной и сухой среде.

Растворимые сопутствующие материалы дают возможность изготавливать довольно сложные многоуровневые формы, а также полости и отверстия, которые получить обычными средствами очень сложно. Принтеры, работающие НРМ, изготавливают детали путем нанесения серии слоев, один на другой, при этом металл разогревается до полужидкого состояния и выдавливается через сопло, на определенные места, запрограммированные на ПК.

Чтобы производить печать с применением методики НРМ используют сразу два разных материала, основной нужен для создания самой детали, а дополнительный для поддержки. Нити и того и другого металла подводятся в головку устройства, которая движется и налаживает металл, образовывая слой. После завершения очередного слоя, платформа опускается, и головка принимается за следующий слой. Когда 3D-принтер уже закончит производство детали, нужно отделить вспомогательный металл, либо растворить его моющим средством. Изделие готово к работе.

Сегодня большой популярностью пользуются не только автоматические устройства HPM, но и ручные их версии. Такие аппараты, по сути, являются ручками для изготовления 3D объектов. Такие ручки сделаны, как и автоматические принтеры, с той лишь разницей, что их головку человек держит в руке и дозирует наплавляемый материал.

Естественно что, как и технологии, сами аппараты тоже отличаются друг от друга. Если у вас модель типа SLA, то работать по методу SLS он не сможет, т. е. любой из принтеров способен обрабатывать детали только по своей индивидуальной технологии.

Области применения 3D печати

3D печать открыла новые горизонты в таких отраслях как, строительство, медицина, образование, создание одежды, производство, ювелирное искусство, и даже в пищевой индустрии.

К примеру, в архитектурном деле, 3Д печать способна создать модели домов, или полностью целых микрорайонов, со всеми их особенностями. При таких работах применяется дешевая гипсовая смесь, которая делает себестоимость моделей очень низкой. Широчайшая цветовая гамма 390 тысяч оттенков CMYK дает возможность легко реализовать абсолютно любую, даже самую необычную идею архитектора.

3d принтер в области архитектуры

Сегодня можно смело предположить, что в сфере строительства скоро произойдет гигантский прорыв. Инженерам из Калифорнии удалось создать уникальную систему 3Д печати  объектов в натуральную величину. Она действует подобно крану, который возводит стены домов. К примеру для того чтобы напечатать полно объемный двух этажный дом, принтеру нужно всего 20 часов. После чего строителям необходимо будет всего лишь отделать стены. 3D House становится все более и более популярным.

Остальные отрасли применения

Уже сегодня ведущие работники медицины способны с помощью 3D принтера воссоздать отдельные участки человеческого скелета, благодаря которым проводить операции стало намного легче, а сами имплантаты лучше приживаются. Также широкой популярностью печатающие технологии пользуются и в стоматологической сфере, изготовленные таким образом имплантаты более качественные.

Сравнительно недавно ученым из Германии удалось напечатать человеческую кожу. Сырьем для ее создания служит гель, изготовленный из кожи донора. Еще в 2011 г. специалистам посчастливилось изготовить с помощью 3D принтера живую почку человека.

Как видно из выше сказанного, возможности 3D принтеров имеют огромный потенциал. Устройства, готовящие вкуснейшие блюда, делающие протезы и внутренние органы людей, игрушки и инструкции к эксплуатации, туфли и куртки — это уже не фантастика — а наше настоящее. А что ждет нас в скором будущем, на этот вопрос наверняка сможет ответить только фантаст с хорошим воображением.

lab-37.com

3D-принтер что такое?


Распечатывать картинки научились уже давно. Хотя, собственно говоря, не так уж давно. Сначала принтеры печатали только текст одним-единственным шрифтом, как на пишущей машинке.

А потом на этих принтерах с помощью букв и цифр удавалось даже нарисовать изображение. Это была так называемая матричная печать.

Струйная и лазерная печать позволили без труда печатать черно-белые и цветные изображения практически любой степени разрешения всех цветов и оттенков.

Но идея печатать трехмерные материальные объекты никогда не покидала разработчиков.

И вот стали совершенно реальными принтеры, которые печатают не картинку на бумаге, а объект в пространстве. Пространство имеет 3 измерения, поэтому такие принтеры получили название 3D-принтеры или, говоря простыми словами, трехмерные принтеры. Итак, 3D-принтеры: что такое, как работает и что можно напечатать с его помощью?

Распечатать или воссоздать трехмерное изделие сразу, одним махом невозможно. Поэтому и трехмерные принтеры распечатывают такие объекты слой за слоем, также как лазерные или струйные двухмерные принтеры распечатывают картинку строка за строчкой.

Распечатанное на принтере 3D модель – это не рисунок на бумаге. Это полноценный материальный объект, который можно взять в руки, перенести, поставить, убрать и наконец использовать по назначению.

3D-принтер – это устройство, которое позволяет создавать изображение в трехмерном измерении.

Такой принтер слой за слоем распечатывает цифровую трехмерную модель.

В качестве материала для создания модели, как правило, используется специальный пластик.

Предпосылки создания 3D-принтера

Первые попытки создания технологии трехмерной печати делали еще в 80-х годах. В то время был разработан стереолитограф, с помощью которого можно было создавать 3D-объекты из жидкого фотополимерного пластика. Технология в таком оборудовании основывается на свойствах фотополимеров – под воздействием лазера он застывает, приобретая твердую форму пластика.

Еще одним предшественником современного 3D-принтера стала технология «лазерного спекания». Основой для создания объемных моделей является порошок легкоплавкого пластика. От воздействия лазера пластик плавится, а затем спекается в единую массу. А чтобы от сильного нагрева пластик не воспламенился, в рабочую камеру закачивают инертный газ. Сложность обслуживания такого оборудования не позволяет такие принтеры использовать в домашних условиях.

Современный домашний 3D-принтер

Уже сегодня есть модели 3D-принтера для дома. Правда, стоимость их достаточно высока.

Как работает 3D-принтер?

Работает следующим образом: к рабочему элементу – головке-экструдеру подается пластиковая нить, он ее плавит и через сопло наносит в нужную точку распечатываемого слоя. При комнатной температуре пластик очень быстро застывает, что позволяет беспрерывно печатать, создавая слой за слоем объемный объект.

Каких-либо специальных условий при обслуживании 3D-принтера для дома не требуется, кроме затрат на печать (стоимость одного килограмма пластиковой нити 50-60 долларов).

В процессе печати такой принтер, можно сказать, прямо в воздухе из расплавленной нити воссоздает материальный объект. Данный объект предварительно должен быть оцифрован и в виде файла находиться в компьютере. Далее с помощью драйвера из цифровой модели объекта воспроизводятся такие движения печатающей головки, чтобы вытекающая из них расплавленная нить в конечном итоге застыла в виде точной копии оцифрованного объекта.

Встает собственно вопрос, а что это за цифровая модель материального объекта? Это файл, в котором специальным образом описано устройство этого объекта. Также как в текстовых файлах содержится модель текста, в графических файлах – модель картинок, в видео-файлах содержится модель видео изображения со звуком.

Мы привыкли к тому, что в таких файлах есть соответствующие расширения, по которым мы легко определяем, что за информация в них хранится. Например, расширение .txt и .doc – это тексты. Расширение .jpg и .png – это картинки. Расширение .avi и .mpeg4 – это видео. Также и у файлов 3d-моделей должны быть свои, отличные от других расширения файлов.

А как создать такие файлы? Для этого нужны соответствующие программы-конструкторы, равно как для создания текстов нужен текстовый редактор, для создания картинок нужен графический редактор.

Также уже существуют 3D-сканеры, позволяющие автоматизировать процесс создания 3D-файла также, как привычный сканер создает файл с только что отсканированным им изображением.

Как видим, технология работы с 3D-принтером и 3D-моделями во многом схожи с привычными методами и приемами работы с компьютерными файлами.

3D-принтер открывает новые возможности

Благодаря технологии 3D-принтера возможно печатать очень сложные трехмерные модели. Например, можно распечатать проекционную модель здания, причем точность передачи объекта может доходить до 100 микрон. Интересно, что 3D-принтеру под силу распечатывать даже модели с подвижными частями уже в сборе.

3D-принтеры для дома еще достаточно дороги, но многие уже оценили возможности такого оборудования. Эти принтеры пока более актуальны в научных институтах. Ведь благодаря им появилась возможность быстро и относительно просто воссоздавать разработанные прототипы, не прибегая к услугам опытного или серийного производства.

Оценили возможности 3D-принтеров люди разных профессий.

  • Ювелирам теперь проще создавать новые украшения самых разнообразных форм.
  • Понравилась новинка и археологам, так как при необходимости можно сделать точную копию найденной находки.
  • А в археологии очень трепетно относятся к оригиналам, стараясь лишний раз к ним даже не прикасаться.

3D-принтеры действительно открывают огромные возможности во всех сферах деятельности человека. Интересно, что существуют 3D-принтеры, которые печатают не пластиком, а шерстью, металлом и даже есть тестовые модели, печатающие пиццу.

Видео “В России напечатали первый жилой 3D-дом”

Мечтой ученых, которая скоро может стать былью – воссоздание человеческих органов, а так же создание бытовых «пищевых принтеров», которые из углеводов и белков смогут производить настоящие продукты. «Фантастика!», – скажете Вы… Возможно… но уже сегодня активно ведутся разработки технологии 3D-печати живой ткани с помощью стволовых клеток.

Сканирование 3D-объекта и последующая передача его модели в виде файла в любую точку мира, где есть Интернет, и там распечатка с помощью 3D-технологии – чем не быстрая передача материального объекта на любые расстояния? Об этом пока еще можно только мечтать. Но не за горами то время, когда можно будет позвонить или через Интернет сделать заказ пиццы на дом, оплатить этот заказ опять же через Интернет, и тут же у себя на кухне распечатать горяченькую пиццу. Приятного аппетита!

За 3D-технологиями большое будущее. Пока мы еще стоим в самом начале этого пути. Но ведь матричные принтеры, которые могли печатать только текст – это не такое уж отдаленное прошлое. И кто тогда мог представить, какие возможности открывает технология печати?!

 

P.S. Как Вы считаете, можно ли сравнить компьютерную грамотность с Джином, выпущенным из кувшина? Еще по теме:

Картридж для принтера: заправить или купить?

Что такое сканер и как им пользоваться

Что значит iPad и для чего он сгодится?

Что такое гаджет и что такое виджет?

Что такое планшетный ПК?



Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик.
Уже более 3.000 подписчиков

.

Важно: необходимо подтвердить свою подписку! В своей почте откройте письмо для активации и кликните по указанной там ссылке. Если письма нет, проверьте папку Спам.


Автор: Надежда


19 декабря 2014

www.compgramotnost.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о